2-1)sin3x*cosx-sinx*cos3x=1
sin(3x-x)=1; sin2x=1; ![2x=\frac{\pi}{2} +\pi 2x=\frac{\pi}{2} +\pi](https://tex.z-dn.net/?f=2x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Cpi)
![x=\frac{\pi }{4} +\frac{\pi }{2} *n x=\frac{\pi }{4} +\frac{\pi }{2} *n](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%2B%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%2An)
2)2![cos^{2} x+5cosx-3=0 cos^{2} x+5cosx-3=0](https://tex.z-dn.net/?f=cos%5E%7B2%7D%20x%2B5cosx-3%3D0)
пусть cosx=t, тогда 2*![t^{2}+5t-3=0 t^{2}+5t-3=0](https://tex.z-dn.net/?f=t%5E%7B2%7D%2B5t-3%3D0)
D=25+24=49
![t=\frac{-5+7}{4} , t=\frac{1}{2} t=\frac{-5+7}{4} , t=\frac{1}{2}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-5%2B7%7D%7B4%7D%20%2C%20t%3D%5Cfrac%7B1%7D%7B2%7D)
![t=\frac{-5-7}{4}=-3 t=\frac{-5-7}{4}=-3](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-5-7%7D%7B4%7D%3D-3)
Делаем обратную замену
cosx=-3 нет корней,
cosx=
; x=![\frac{\pi}{3} +2\pi*n \frac{\pi}{3} +2\pi*n](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B2%5Cpi%2An)
x=-![\frac{\pi}{3} +2\pi*n \frac{\pi}{3} +2\pi*n](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B2%5Cpi%2An)
3)tgx-3ctgx=0
![tgx-\frac{3}{tgx} =0 tgx-\frac{3}{tgx} =0](https://tex.z-dn.net/?f=tgx-%5Cfrac%7B3%7D%7Btgx%7D%20%3D0)
тангенс не равен нулю ;
; ![tg^{2} x=3 tg^{2} x=3](https://tex.z-dn.net/?f=tg%5E%7B2%7D%20x%3D3)
![tgx=\sqrt{3}; x=\frac{\pi}{6} +\pi *n tgx=\sqrt{3}; x=\frac{\pi}{6} +\pi *n](https://tex.z-dn.net/?f=tgx%3D%5Csqrt%7B3%7D%3B%20x%3D%5Cfrac%7B%5Cpi%7D%7B6%7D%20%2B%5Cpi%20%2An)
![tgx=-\sqrt{3}; x=-\frac{\pi }{6}+\pi*n tgx=-\sqrt{3}; x=-\frac{\pi }{6}+\pi*n](https://tex.z-dn.net/?f=tgx%3D-%5Csqrt%7B3%7D%3B%20x%3D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2B%5Cpi%2An)
4) sin3x-sinx=0
![2*sin\frac{3x-x}{2} *cos\frac{3x+x}{2} =0 2*sin\frac{3x-x}{2} *cos\frac{3x+x}{2} =0](https://tex.z-dn.net/?f=2%2Asin%5Cfrac%7B3x-x%7D%7B2%7D%20%2Acos%5Cfrac%7B3x%2Bx%7D%7B2%7D%20%3D0)
2sinx*cos2x=0
sinx=0; x=![\pi*n \pi*n](https://tex.z-dn.net/?f=%5Cpi%2An)
cos2x=0; 2x=![\frac{\pi}{2} +\pi*n; x=\frac{\pi }{4} +\frac{\pi*n }{2} \frac{\pi}{2} +\pi*n; x=\frac{\pi }{4} +\frac{\pi*n }{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Cpi%2An%3B%20x%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%2B%5Cfrac%7B%5Cpi%2An%20%7D%7B2%7D)
5) 2sinx+sin2x=0
2sinx+2sinx*cosx=0
2sinx*(1+cosx)=0
sinx=0; x=![\pi*n \pi*n](https://tex.z-dn.net/?f=%5Cpi%2An)
cosx=-1; x=![\pi+2* \pi *n \pi+2* \pi *n](https://tex.z-dn.net/?f=%5Cpi%2B2%2A%20%5Cpi%20%2An)
во всех уравнениях в ответах написать n∈Z