Пошаговое объяснение:
1) Раскроем синус двойного угла:
![\sin(2x) = \frac{2\tan(x)}{1+\tan^{2}(x)} \sin(2x) = \frac{2\tan(x)}{1+\tan^{2}(x)}](https://tex.z-dn.net/?f=%5Csin%282x%29%20%3D%20%5Cfrac%7B2%5Ctan%28x%29%7D%7B1%2B%5Ctan%5E%7B2%7D%28x%29%7D)
2) Сведём неравенство к квадратному.
![\frac{2\tan(x)}{1+\tan^{2}(x)}<-\frac{1}{2} \frac{2\tan(x)}{1+\tan^{2}(x)}<-\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Ctan%28x%29%7D%7B1%2B%5Ctan%5E%7B2%7D%28x%29%7D%3C-%5Cfrac%7B1%7D%7B2%7D)
![2\tan(x)<-\frac{1+\tan^{2}(x)}{2} 2\tan(x)<-\frac{1+\tan^{2}(x)}{2}](https://tex.z-dn.net/?f=2%5Ctan%28x%29%3C-%5Cfrac%7B1%2B%5Ctan%5E%7B2%7D%28x%29%7D%7B2%7D)
![4\tan(x)<-1-\tan^{2}(x) 4\tan(x)<-1-\tan^{2}(x)](https://tex.z-dn.net/?f=4%5Ctan%28x%29%3C-1-%5Ctan%5E%7B2%7D%28x%29)
![\tan^{2}(x)+4\tan(x)+1<0 \tan^{2}(x)+4\tan(x)+1<0](https://tex.z-dn.net/?f=%5Ctan%5E%7B2%7D%28x%29%2B4%5Ctan%28x%29%2B1%3C0)
3) Сделаем замену
и найдём корни получившегося уравнения.
![t_{1}=\frac{-4-\sqrt{16-4}}{2}=\frac{-4-2\sqrt{3}}{2}=-2-\sqrt{3} t_{1}=\frac{-4-\sqrt{16-4}}{2}=\frac{-4-2\sqrt{3}}{2}=-2-\sqrt{3}](https://tex.z-dn.net/?f=t_%7B1%7D%3D%5Cfrac%7B-4-%5Csqrt%7B16-4%7D%7D%7B2%7D%3D%5Cfrac%7B-4-2%5Csqrt%7B3%7D%7D%7B2%7D%3D-2-%5Csqrt%7B3%7D)
![t_{2}=\frac{-4+\sqrt{16-4}}{2}=\frac{-4+2\sqrt{3}}{2}=\sqrt{3}-2 t_{2}=\frac{-4+\sqrt{16-4}}{2}=\frac{-4+2\sqrt{3}}{2}=\sqrt{3}-2](https://tex.z-dn.net/?f=t_%7B2%7D%3D%5Cfrac%7B-4%2B%5Csqrt%7B16-4%7D%7D%7B2%7D%3D%5Cfrac%7B-4%2B2%5Csqrt%7B3%7D%7D%7B2%7D%3D%5Csqrt%7B3%7D-2)
4) Разложим квадратный трёхчлен на множители.
![(t+2+\sqrt{3})(t-\sqrt{3}+2)<0 (t+2+\sqrt{3})(t-\sqrt{3}+2)<0](https://tex.z-dn.net/?f=%28t%2B2%2B%5Csqrt%7B3%7D%29%28t-%5Csqrt%7B3%7D%2B2%29%3C0)
5) Решим первое неравенство:
![\tan(x)<-2-\sqrt{3} \tan(x)<-2-\sqrt{3}](https://tex.z-dn.net/?f=%5Ctan%28x%29%3C-2-%5Csqrt%7B3%7D)
![x \in (-\frac{\pi}{2}+\pi n;\arctan(-2-\sqrt{3})+\pi n), n \in \mathbb{Z} x \in (-\frac{\pi}{2}+\pi n;\arctan(-2-\sqrt{3})+\pi n), n \in \mathbb{Z}](https://tex.z-dn.net/?f=x%20%5Cin%20%28-%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Cpi%20n%3B%5Carctan%28-2-%5Csqrt%7B3%7D%29%2B%5Cpi%20n%29%2C%20n%20%5Cin%20%5Cmathbb%7BZ%7D)
6) Решим второе неравенство:
![\tan(x)<\sqrt{3}-2 \tan(x)<\sqrt{3}-2](https://tex.z-dn.net/?f=%5Ctan%28x%29%3C%5Csqrt%7B3%7D-2)
![x \in (-\frac{\pi}{2}+\pi n;\arctan(\sqrt{3}-2)+\pi n), n \in \mathbb{Z} x \in (-\frac{\pi}{2}+\pi n;\arctan(\sqrt{3}-2)+\pi n), n \in \mathbb{Z}](https://tex.z-dn.net/?f=x%20%5Cin%20%28-%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Cpi%20n%3B%5Carctan%28%5Csqrt%7B3%7D-2%29%2B%5Cpi%20n%29%2C%20n%20%5Cin%20%5Cmathbb%7BZ%7D)
Общим решением будет объединение этих двух решений.