-1\\ x>\frac{1}{27} \\\end{array}\Leftrightarrow \displaystyle \left \{ {{x>\frac{1}{27}} \atop {x<1}} \right. \Leftrightarrow x\in(\frac{1}{27};1)" alt="log_2(\frac{1}{x}-1)+log_2(\frac{1}{x}+1)\leq log_2(27x-1)\\ \left\{\begin{array}{ccc}x<1\\x>-1\\ x>\frac{1}{27} \\\end{array}\Leftrightarrow \displaystyle \left \{ {{x>\frac{1}{27}} \atop {x<1}} \right. \Leftrightarrow x\in(\frac{1}{27};1)" align="absmiddle" class="latex-formula">
учитывая одз: , получим
Ответ: