Минимальное угловое расстояние (α) между двумя звездами (иначе разрешающую способность телескопа) можно найти по формуле, предложенной в свое время выдающимся советским оптиком, труды которого известны во всем мире, Максутовым Д.Д. В соответствии с этой формулой, при визуальных наблюдениях (наблюдение глазом), угловое разрешение телескопа α = 140``/D; здесь 140`` - сто сорок угловых секунд. D – световой диаметр объектива телескопа в миллиметрах. Таким образом, разрешение телескопа с диаметром объектива 10 см (100 мм) α = 140/100 =1,4 угловых секунды. Разрешение телескопа с объективом диаметром 1м (1000 мм) будет равно α = 140/1000 = 0,14 угловой секунды.
При определении оптической мощности телескопа будем считать, что диаметр зрачка глаза d = 6 миллиметров, а так же, что глаз может на пределе увидеть звезды, яркость которых = 6m. В первом приближении можно считать, что при наблюдении звезды в телескоп световой поток, попадающий в глаз, будет во столько раз больше, чем при ее наблюдении невооруженным глазом, во сколько раз площадь объектива больше площади зрачка. Т.е. в (D/d)² раз. Тогда выигрыш в звездных величинах можно найти по формуле 5lg(D/d). Таким образом, объектив диаметром D=100 даст выигрыш в 5lg(100/6) = 5lg(16,(6)) = 5*1,2218 = 6,1m. В этом случае можно в телескоп увидеть звезды 6 + 6,1, приблизительно, 12m (двенадцатой звездной величины).
Объектив диаметром D = 1000 даст выигрыш 5lg(1000/6) = 5lg(166,(6)) = 11,1m. Можно увидеть звезды 6 + 11,1, приблизительно 17m (семнадцатой звездной величины).
На самом деле, в силу разных причин (состояние атмосферы, слишком большое увеличение, потери света в телескопе), в указанные телескопы можно будет увидеть несколько менее яркие звезды. В некоторых случаях можно «потерять» целую звездную величину.