![y=\cos^2{(\frac{x}{2}-\frac{\pi}{12})}-\sin^2{(\frac{\pi}{12}-\frac{x}{2})}-1=\\\cos^2{\frac{6x-\pi}{12}}-(-\sin{\frac{6x-\pi}{12}})(-\sin{\frac{6x-\pi}{12}})-1=\\\cos^2{\frac{6x-\pi}{12}}-\sin^2{\frac{6x-\pi}{12}}-1=\\\cos{(2*\frac{6x-\pi}{12})}-1=\cos{(x-\frac{\pi}{6})}-1\\ y=\cos^2{(\frac{x}{2}-\frac{\pi}{12})}-\sin^2{(\frac{\pi}{12}-\frac{x}{2})}-1=\\\cos^2{\frac{6x-\pi}{12}}-(-\sin{\frac{6x-\pi}{12}})(-\sin{\frac{6x-\pi}{12}})-1=\\\cos^2{\frac{6x-\pi}{12}}-\sin^2{\frac{6x-\pi}{12}}-1=\\\cos{(2*\frac{6x-\pi}{12})}-1=\cos{(x-\frac{\pi}{6})}-1\\](https://tex.z-dn.net/?f=y%3D%5Ccos%5E2%7B%28%5Cfrac%7Bx%7D%7B2%7D-%5Cfrac%7B%5Cpi%7D%7B12%7D%29%7D-%5Csin%5E2%7B%28%5Cfrac%7B%5Cpi%7D%7B12%7D-%5Cfrac%7Bx%7D%7B2%7D%29%7D-1%3D%5C%5C%5Ccos%5E2%7B%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%7D-%28-%5Csin%7B%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%7D%29%28-%5Csin%7B%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%7D%29-1%3D%5C%5C%5Ccos%5E2%7B%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%7D-%5Csin%5E2%7B%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%7D-1%3D%5C%5C%5Ccos%7B%282%2A%5Cfrac%7B6x-%5Cpi%7D%7B12%7D%29%7D-1%3D%5Ccos%7B%28x-%5Cfrac%7B%5Cpi%7D%7B6%7D%29%7D-1%5C%5C)
График этой функции будет как у cos x, только он будет опущен на 1 вниз и сдвинут вправо на π/6.
Найдём точки пересечения с осями координат:
![y=\cos{(x-\frac{\pi}{6})}-1=0;x-\frac{\pi}{6}=2\pi n;\\x=\frac{\pi}{6}+2\pi n,n\in \mathbb{Z}.\\y(0)=\cos{(-\frac{\pi}{6})}-1=\frac{\sqrt{3}}{2}-1 y=\cos{(x-\frac{\pi}{6})}-1=0;x-\frac{\pi}{6}=2\pi n;\\x=\frac{\pi}{6}+2\pi n,n\in \mathbb{Z}.\\y(0)=\cos{(-\frac{\pi}{6})}-1=\frac{\sqrt{3}}{2}-1](https://tex.z-dn.net/?f=y%3D%5Ccos%7B%28x-%5Cfrac%7B%5Cpi%7D%7B6%7D%29%7D-1%3D0%3Bx-%5Cfrac%7B%5Cpi%7D%7B6%7D%3D2%5Cpi%20n%3B%5C%5Cx%3D%5Cfrac%7B%5Cpi%7D%7B6%7D%2B2%5Cpi%20n%2Cn%5Cin%20%5Cmathbb%7BZ%7D.%5C%5Cy%280%29%3D%5Ccos%7B%28-%5Cfrac%7B%5Cpi%7D%7B6%7D%29%7D-1%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D-1)
-1 ≤ cos x ≤ 1
Поэтому минимальные и максимальные значения будут в точках с ординатами -2 и 0, т.к. у нас график косинуса, то эти же точки и будут экстремумами.
![\cos{(x-\frac{\pi}{6})}-1=-2;x-\frac{\pi}{6}=-\pi +2\pi n;\\x=-\frac{5\pi}{6}+2\pi n,n\in \mathbb{Z}. \cos{(x-\frac{\pi}{6})}-1=-2;x-\frac{\pi}{6}=-\pi +2\pi n;\\x=-\frac{5\pi}{6}+2\pi n,n\in \mathbb{Z}.](https://tex.z-dn.net/?f=%5Ccos%7B%28x-%5Cfrac%7B%5Cpi%7D%7B6%7D%29%7D-1%3D-2%3Bx-%5Cfrac%7B%5Cpi%7D%7B6%7D%3D-%5Cpi%20%2B2%5Cpi%20n%3B%5C%5Cx%3D-%5Cfrac%7B5%5Cpi%7D%7B6%7D%2B2%5Cpi%20n%2Cn%5Cin%20%5Cmathbb%7BZ%7D.)
У нас есть всё чтобы построить график функции.
Смотри вниз.