0\; ,\\\\znaki:\; \; ...(-\sqrt2)....(0)+++[\, \frac{1}{2}\, ]---(1)+++(\sqrt2)---[\, 3\, ]+++\\\\t\in [\,\frac{1}{2}\, ,1)\cup (\sqrt2,3\, ]\\\\\frac{1}{2}\leq 3^{x}<1\; \; \to \; \; log_3\frac{1}{2}\leq x<0\; \; ,\; \; -log_32\leq x<0\\\\\sqrt2<3^{x}\leq 3\; \; \to \; \; log_3\sqrt2<x\leq 1\; \; ,\; \; \frac{1}{2}log_32<x\leq 1\\\\x\in [-log_32,0\, )\cup (\, \frac{1}{2}log_32,1\, ]" alt="\frac{2\cdot (t-\frac{1}{2})(t-3)}{(t-1)(t-\sqrt2)(t+\sqrt2)}\leq 0\; ,\; \; t=3^{x}>0\; ,\\\\znaki:\; \; ...(-\sqrt2)....(0)+++[\, \frac{1}{2}\, ]---(1)+++(\sqrt2)---[\, 3\, ]+++\\\\t\in [\,\frac{1}{2}\, ,1)\cup (\sqrt2,3\, ]\\\\\frac{1}{2}\leq 3^{x}<1\; \; \to \; \; log_3\frac{1}{2}\leq x<0\; \; ,\; \; -log_32\leq x<0\\\\\sqrt2<3^{x}\leq 3\; \; \to \; \; log_3\sqrt2<x\leq 1\; \; ,\; \; \frac{1}{2}log_32<x\leq 1\\\\x\in [-log_32,0\, )\cup (\, \frac{1}{2}log_32,1\, ]" align="absmiddle" class="latex-formula">