Стороны треугольника 10,17,21 см. Из вершины наибольшего угла восстановлен перпендикуляр...

0 голосов
220 просмотров

Стороны треугольника 10,17,21 см. Из вершины наибольшего угла восстановлен перпендикуляр к плоскости треугольника.Длина этого перепендикуляра 15 см.найдите расстояние от конца( не лежащего на плоскости) перпендикуляра до наибольшей стороны треугольника


Геометрия (69 баллов) | 220 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дано: треугольник АВС. АС=21, АВ=17, ВС=10
наибольший угол лежит напротив большей стороны, т.е. BK - перпендикуляр=15
расстоянием от конца-точки К до наиб.стороны - АС это КМ-перпендикуляр.
Проведём ВК, т.к наклонная КМ перпендикулярна АС, то и её проекция ВК будет перпенд. АС.
Найдём площадь треугольника по формуле Герона: S=sqrt(p(p-a)*(p-b)*(p-c))
p=24
S=sqrt(24*3*7*14)=sqrt(3*4*2*3*7*7*2)=3*2*2*7=84
S=1/2*AC*BK, отсюда ВК=84*2/21=8
Рассмотрим треугольник КМВ -прямоугольный: по т.Пиф.: КМ=sqrt(225+64)=17
Ответ: 17

(343 баллов)
0

А что с рисунком?