0\\\log_5x=t,\;\log^2_5x=t^2\\2t^2+5t+2=0\\D=25-4\cdot2\cdot2=9\\t_{1,2}=\frac{-5\pm3}4\\t_1=-2,\;t_2=-\frac12\\\log_5x=-2\Rightarrow x_1=5^{-2}=\frac1{25}\\\log_5x=-\frac12\Rightarrow x_2=5^{-\frac12}=\frac1{\sqrt2}" alt="2\log^2_5x+5\log_5x+2=0\\O.D.3.:\;x>0\\\log_5x=t,\;\log^2_5x=t^2\\2t^2+5t+2=0\\D=25-4\cdot2\cdot2=9\\t_{1,2}=\frac{-5\pm3}4\\t_1=-2,\;t_2=-\frac12\\\log_5x=-2\Rightarrow x_1=5^{-2}=\frac1{25}\\\log_5x=-\frac12\Rightarrow x_2=5^{-\frac12}=\frac1{\sqrt2}" align="absmiddle" class="latex-formula">