1.
![x=0{,}03\sin\left(\pi t+\dfrac{\pi}{3}\right) x=0{,}03\sin\left(\pi t+\dfrac{\pi}{3}\right)](https://tex.z-dn.net/?f=x%3D0%7B%2C%7D03%5Csin%5Cleft%28%5Cpi%20t%2B%5Cdfrac%7B%5Cpi%7D%7B3%7D%5Cright%29)
- Уравнение гармонических колебаний (по синусу, для данного случая) имеет следующий вид:
![x=A\sin\left(\omega t+\varphi\right) x=A\sin\left(\omega t+\varphi\right)](https://tex.z-dn.net/?f=x%3DA%5Csin%5Cleft%28%5Comega%20t%2B%5Cvarphi%5Cright%29)
- амплитуда,
- циклическая частота,
- начальная фаза колебаний.
- Из данного уравнения получаем
; ![\omega = \pi~\mathrm{s^{-1}} \omega = \pi~\mathrm{s^{-1}}](https://tex.z-dn.net/?f=%5Comega%20%3D%20%5Cpi~%5Cmathrm%7Bs%5E%7B-1%7D%7D)
![\nu=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=0{,}5~\mathrm{Hz} \nu=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=0{,}5~\mathrm{Hz}](https://tex.z-dn.net/?f=%5Cnu%3D%5Cdfrac%7B%5Comega%7D%7B2%5Cpi%7D%3D%5Cdfrac%7B%5Cpi%7D%7B2%5Cpi%7D%3D0%7B%2C%7D5~%5Cmathrm%7BHz%7D)
![T=\dfrac{1}{\nu}=\dfrac{1}{0{,}5}=2~\mathrm{s} T=\dfrac{1}{\nu}=\dfrac{1}{0{,}5}=2~\mathrm{s}](https://tex.z-dn.net/?f=T%3D%5Cdfrac%7B1%7D%7B%5Cnu%7D%3D%5Cdfrac%7B1%7D%7B0%7B%2C%7D5%7D%3D2~%5Cmathrm%7Bs%7D)
Ответ. 1) 0,03 м; 2)
с^(-1); 3) 0,5 Гц; 4) 2 с.
2.
![A=3~\mathrm{cm}=0{,}03~\mathrm{m}\medskip\\t=1~\mathrm{min}=60~\mathrm{s}\medskip\\N=240\medskip\\\varphi=30^\circ=\dfrac{\pi}{6} A=3~\mathrm{cm}=0{,}03~\mathrm{m}\medskip\\t=1~\mathrm{min}=60~\mathrm{s}\medskip\\N=240\medskip\\\varphi=30^\circ=\dfrac{\pi}{6}](https://tex.z-dn.net/?f=A%3D3~%5Cmathrm%7Bcm%7D%3D0%7B%2C%7D03~%5Cmathrm%7Bm%7D%5Cmedskip%5C%5Ct%3D1~%5Cmathrm%7Bmin%7D%3D60~%5Cmathrm%7Bs%7D%5Cmedskip%5C%5CN%3D240%5Cmedskip%5C%5C%5Cvarphi%3D30%5E%5Ccirc%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D)
- Найдём циклическую частоту
.
- Подставим числа в уравнение гармонических колебаний
![x=0{,}03\sin\left(8\pi t+\dfrac{\pi}{6}\right) x=0{,}03\sin\left(8\pi t+\dfrac{\pi}{6}\right)](https://tex.z-dn.net/?f=x%3D0%7B%2C%7D03%5Csin%5Cleft%288%5Cpi%20t%2B%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cright%29)
Ответ. ![x=0{,}03\sin\left(8\pi t+\dfrac{\pi}{6}\right) x=0{,}03\sin\left(8\pi t+\dfrac{\pi}{6}\right)](https://tex.z-dn.net/?f=x%3D0%7B%2C%7D03%5Csin%5Cleft%288%5Cpi%20t%2B%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cright%29)
3.
![x=0{,}08\sin\left(10\pi t\right) x=0{,}08\sin\left(10\pi t\right)](https://tex.z-dn.net/?f=x%3D0%7B%2C%7D08%5Csin%5Cleft%2810%5Cpi%20t%5Cright%29)
- Соответственно максимальные скорость и ускорение при гармонических колебаниях
![v_{_m}=A\cdot\omega\medskip\\a_{_m}=A\cdot\omega^2 v_{_m}=A\cdot\omega\medskip\\a_{_m}=A\cdot\omega^2](https://tex.z-dn.net/?f=v_%7B_m%7D%3DA%5Ccdot%5Comega%5Cmedskip%5C%5Ca_%7B_m%7D%3DA%5Ccdot%5Comega%5E2)
![A=0{,}08~\mathrm{m}\medskip\\\omega=10\pi~\mathrm{s^{-1}} A=0{,}08~\mathrm{m}\medskip\\\omega=10\pi~\mathrm{s^{-1}}](https://tex.z-dn.net/?f=A%3D0%7B%2C%7D08~%5Cmathrm%7Bm%7D%5Cmedskip%5C%5C%5Comega%3D10%5Cpi~%5Cmathrm%7Bs%5E%7B-1%7D%7D)
![v_{_m}=0{,}08\cdot 10\pi\approx 0{,}08\cdot 31{,}4\approx 2{,}5~\mathrm{\tfrac{m}{s}}\medskip\\a_{_m}=0{,}08\cdot 100\pi^2\approx 78{,}9~\mathrm{\tfrac{m}{s^2}} v_{_m}=0{,}08\cdot 10\pi\approx 0{,}08\cdot 31{,}4\approx 2{,}5~\mathrm{\tfrac{m}{s}}\medskip\\a_{_m}=0{,}08\cdot 100\pi^2\approx 78{,}9~\mathrm{\tfrac{m}{s^2}}](https://tex.z-dn.net/?f=v_%7B_m%7D%3D0%7B%2C%7D08%5Ccdot%2010%5Cpi%5Capprox%200%7B%2C%7D08%5Ccdot%2031%7B%2C%7D4%5Capprox%202%7B%2C%7D5~%5Cmathrm%7B%5Ctfrac%7Bm%7D%7Bs%7D%7D%5Cmedskip%5C%5Ca_%7B_m%7D%3D0%7B%2C%7D08%5Ccdot%20100%5Cpi%5E2%5Capprox%2078%7B%2C%7D9~%5Cmathrm%7B%5Ctfrac%7Bm%7D%7Bs%5E2%7D%7D)
Ответ.
м/с;
м/с^2.