cos²x + cos²2x + cos²3x + cos²4x = 2
cos2x = 2cos²x - 1 ⇒ cos²x = ( 1 + cos2x )/2
(1 + cos2x)/2 + (1 + cos4x)/2 + (1 + cos6x)/2 + (1 + cos8x)/2 = 2
1 + cos2x + 1 + cos4x + 1 + cos6x + 1 + cos8x = 4
(cos2x + cos8x) + (cos4x + cos6x) = 0
cosα + cosβ = 2•cos( (1/2)•(α + β) )•cos( (1/2)•(α - β) )
2•cos5x•cos3x + 2•cos5x•cosx = 0
2•cos5x•(cos3x + cosx) = 0
2•cos5x•2•cos2x•cosx = 0
4•cos5x•cos2x•cosx = 0
1) cos5x = 0 ⇒ 5x = (π/2) + πn ⇒ x = (π/10) + (πn/5) , n ∈ Z
2) cos2x = 0 ⇒ 2x = (π/2) + πk ⇒ x = (π/4) + (πk/2) , k ∈ Z
3) cosx = 0 ⇒ x = (π/2) + πm , m ∈ Z
ОТВЕТ: (π/10) + (πn/5) , (π/4) + (πk/2) , (π/2) + πm , n,k,m ∈ Z