Помогите решить систему .пожалуйста

0 голосов
18 просмотров

Помогите решить систему .пожалуйста


image

Математика (164 баллов) | 18 просмотров
Дан 1 ответ
0 голосов

Ответ:

(3;1)

Пошаговое объяснение:

Решает сначала первое уравнение, используя определение логарифма.

х-у=(√2)²; х-у=2, отсюда получаем, что х=2+у. Данную информацию используем для решения второго уравнения системы.

2^{2+y}*5^{2+y-2y} =40

2^{2+y} *5^{2-y} =40 Делим обе части уравнения на 5^{y}

\frac{2^{2}*2^{y} *5^{2} }{5^{y} } =40

4*25*(\frac{2}{5}) ^{y} =40

(\frac{2}{5} )^{y} =\frac{40}{4*25} =\frac{10}{25} =\frac{2}{5}

Отсюда получаем, что у=1.

Возвращаемся к исходному х:

х=2+у

у=1

х=3

Ответ: (3;1)

(1.5k баллов)