Ответ:
((x-2)^2*(x-5))/(x^2+4x+3)>=0
x не= -1, х не= -3
(x-2)^2*(x-5)/x^2+4x+3>=0
(x^2-4x+4)*(x-5)/x^2+3x+x+3>=0
x^3-9x^2+24x-20/(3-x)*(x+1)>=0
x^3*x^2-7x^2+14x+10x-20>=0
x^2*(x-2)-7x*(x-2)+10(x-2)/(x+3)*(x+1)>=0
(x-2)*(x*(x-2)-5(x-2))/(x+3)*(x+1)>=0
{(x-2)^2*(x-5)>=0
{(x+3)*(x+1)>=
x є [5.+besk) u{2}
x є (-besk, -3) u (-1, +besk)
x є (-3,-1) u [5,+besk) u {2}
Пошаговое объяснение: