Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
•Графиком линейной функции является прямая.
1.Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:
2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
• если k>0, то функция y=kx+b возрастает
• если k<0, то y=kx+b функция убывает</p>
Коэффициент b показывает смещение графика функции вдоль оси OY:
• если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
• если b<0, то график функции y=kx+b получается из графика функции y=kx сдвигом на b единиц вниз вдоль оси OY</p>
На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3
Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.
Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)
Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3
На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций y=2x+3; y=2x; y=2x-3
Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
• График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
• График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
• График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)
Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k<0 и b>0, то график функции y=kx+b имеет вид:
Если k>0 и b>0, то график функции y=kx+b имеет вид:
Если k>0 и b<0, то график функции y=kx+b имеет вид:</p>
Если k<0 и b<0, то график функции y=kx+b имеет вид:</p>
Если k=0, то функция y=kx+b превращается в функцию y=b и ее график имеет вид:
Ординаты всех точек графика функции y=b равны b Если b=0, то график функции y=kx (прямая пропорциональность) проходит через начало координат:
3.Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.