См. рис.
Для нахождения бокового ребра рассмотрим треугольник SOC, в котором нам известен угол, а прилежащий катет мы можем найти.
АС - диагональ квадрата АВСД, т. О делит АС пополам, следовательно, ОС равен половине диагонали квадрата. ОС=6√2:2=3√2.
В треугольнике SOC через косинус угла в 30 градусов находим боковое ребро SC. SC= 