Универсальная формула подходящая для решения большинства задач на производные: ![(x^{n} )'=nx^{n-1} (x^{n} )'=nx^{n-1}](https://tex.z-dn.net/?f=%28x%5E%7Bn%7D%20%29%27%3Dnx%5E%7Bn-1%7D)
![{{\left( u\left( x \right)\cdot v\left( x \right) \right)}^{\prime }}={u}'\left( x \right)v\left( x \right)+u\left( x \right){v}'\left( x \right) {{\left( u\left( x \right)\cdot v\left( x \right) \right)}^{\prime }}={u}'\left( x \right)v\left( x \right)+u\left( x \right){v}'\left( x \right)](https://tex.z-dn.net/?f=%7B%7B%5Cleft%28%20u%5Cleft%28%20x%20%5Cright%29%5Ccdot%20v%5Cleft%28%20x%20%5Cright%29%20%5Cright%29%7D%5E%7B%5Cprime%20%7D%7D%3D%7Bu%7D%27%5Cleft%28%20x%20%5Cright%29v%5Cleft%28%20x%20%5Cright%29%2Bu%5Cleft%28%20x%20%5Cright%29%7Bv%7D%27%5Cleft%28%20x%20%5Cright%29)
1) ![y'=(3x)'=3 y'=(3x)'=3](https://tex.z-dn.net/?f=y%27%3D%283x%29%27%3D3)
2) ![y'=(\frac{1}{x^{2} } )'=(x^{-2} )'=-\frac{2}{x^{3} } y'=(\frac{1}{x^{2} } )'=(x^{-2} )'=-\frac{2}{x^{3} }](https://tex.z-dn.net/?f=y%27%3D%28%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%20%7D%20%29%27%3D%28x%5E%7B-2%7D%20%29%27%3D-%5Cfrac%7B2%7D%7Bx%5E%7B3%7D%20%7D)
3) ![y'=(\frac{3}{x^{4} } )'=(3x^{-4} )'=-\frac{12}{x^{5} } y'=(\frac{3}{x^{4} } )'=(3x^{-4} )'=-\frac{12}{x^{5} }](https://tex.z-dn.net/?f=y%27%3D%28%5Cfrac%7B3%7D%7Bx%5E%7B4%7D%20%7D%20%29%27%3D%283x%5E%7B-4%7D%20%29%27%3D-%5Cfrac%7B12%7D%7Bx%5E%7B5%7D%20%7D)
4) ![y'=(\frac{1}{2\sqrt{x} } )'=\frac{1}{2} *(x^{-\frac{1}{2} } )'=-\frac{1}{4} *x^{-\frac{3}{2} } = -\frac{1}{4x\sqrt{x} } y'=(\frac{1}{2\sqrt{x} } )'=\frac{1}{2} *(x^{-\frac{1}{2} } )'=-\frac{1}{4} *x^{-\frac{3}{2} } = -\frac{1}{4x\sqrt{x} }](https://tex.z-dn.net/?f=y%27%3D%28%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%20%7D%20%29%27%3D%5Cfrac%7B1%7D%7B2%7D%20%2A%28x%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D%20%29%27%3D-%5Cfrac%7B1%7D%7B4%7D%20%2Ax%5E%7B-%5Cfrac%7B3%7D%7B2%7D%20%7D%20%3D%20-%5Cfrac%7B1%7D%7B4x%5Csqrt%7Bx%7D%20%7D)
5)
(решишь сам по аналогии, просто времени нет расписывать)
6)
, так как ![(sin\,x)'=cos\,x (sin\,x)'=cos\,x](https://tex.z-dn.net/?f=%28sin%5C%2Cx%29%27%3Dcos%5C%2Cx)
7)
, так как ![(e^{kx+b} )'=ke^{kx+b} (e^{kx+b} )'=ke^{kx+b}](https://tex.z-dn.net/?f=%28e%5E%7Bkx%2Bb%7D%20%29%27%3Dke%5E%7Bkx%2Bb%7D)
8) ![y'=(\sqrt{1-x} )'=-\frac{1}{2\sqrt{1-x} } y'=(\sqrt{1-x} )'=-\frac{1}{2\sqrt{1-x} }](https://tex.z-dn.net/?f=y%27%3D%28%5Csqrt%7B1-x%7D%20%29%27%3D-%5Cfrac%7B1%7D%7B2%5Csqrt%7B1-x%7D%20%7D)
9) ![y' =(2sin\, x\,cos\,x)'= 2cos^2x- 2sin^2x=2cos\,2x y' =(2sin\, x\,cos\,x)'= 2cos^2x- 2sin^2x=2cos\,2x](https://tex.z-dn.net/?f=y%27%20%3D%282sin%5C%2C%20x%5C%2Ccos%5C%2Cx%29%27%3D%202cos%5E2x-%202sin%5E2x%3D2cos%5C%2C2x)
10)
(решишь сам по аналогии, просто времени нет расписывать)
11) ![y'=(tg^2x)'=2tg^{2-1}x\cdot (tg x)'=2tgx\cdot \dfrac{1}{\cos^ 2x} =\dfrac{2tgx}{\cos^ 2x} y'=(tg^2x)'=2tg^{2-1}x\cdot (tg x)'=2tgx\cdot \dfrac{1}{\cos^ 2x} =\dfrac{2tgx}{\cos^ 2x}](https://tex.z-dn.net/?f=y%27%3D%28tg%5E2x%29%27%3D2tg%5E%7B2-1%7Dx%5Ccdot%20%28tg%20x%29%27%3D2tgx%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Ccos%5E%202x%7D%20%3D%5Cdfrac%7B2tgx%7D%7B%5Ccos%5E%202x%7D)
12) ![y'= (cos^{3} x)'= =-3cos^2x*sin\,x y'= (cos^{3} x)'= =-3cos^2x*sin\,x](https://tex.z-dn.net/?f=y%27%3D%20%28cos%5E%7B3%7D%20x%29%27%3D%20%3D-3cos%5E2x%2Asin%5C%2Cx)