Дано:
U0=32м/c
η=0,6
Найти:
Δt-?
Вниз действуют сила mg+Fсопротивления/m=(1+η)mg\m=(1+η)g=ay
![0=U_0-a_yt_1\\\\ t_1=\frac{U_0}{a_y}=\frac{U_0}{(1+\eta)g} 0=U_0-a_yt_1\\\\ t_1=\frac{U_0}{a_y}=\frac{U_0}{(1+\eta)g}](https://tex.z-dn.net/?f=0%3DU_0-a_yt_1%5C%5C%5C%5C%20t_1%3D%5Cfrac%7BU_0%7D%7Ba_y%7D%3D%5Cfrac%7BU_0%7D%7B%281%2B%5Ceta%29g%7D)
Теперь тело падает вниз:
![ay^*=\frac{mg-F_c}{m}=\frac{mg(1-\eta)}{m}=g(1-\eta) ay^*=\frac{mg-F_c}{m}=\frac{mg(1-\eta)}{m}=g(1-\eta)](https://tex.z-dn.net/?f=ay%5E%2A%3D%5Cfrac%7Bmg-F_c%7D%7Bm%7D%3D%5Cfrac%7Bmg%281-%5Ceta%29%7D%7Bm%7D%3Dg%281-%5Ceta%29)
Высота равна:
![h=U_0t_1-\frac{ayt_1^2}{2} h=U_0t_1-\frac{ayt_1^2}{2}](https://tex.z-dn.net/?f=h%3DU_0t_1-%5Cfrac%7Bayt_1%5E2%7D%7B2%7D)
Подставим t1 которое нашли:
![h=\frac{U_0^2}{2(1+\eta)h} h=\frac{U_0^2}{2(1+\eta)h}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BU_0%5E2%7D%7B2%281%2B%5Ceta%29h%7D)
Вниз:
t_2=\sqrt{\frac{2h}{ay^*} }=\sqrt{\frac{U_0^2}{(1+\eta)g^2(1-\eta)} }=\frac{U_0}{g-\sqrt{1-\eta^2} }" alt="h=\frac{ay^*t_2^2}{2}=>t_2=\sqrt{\frac{2h}{ay^*} }=\sqrt{\frac{U_0^2}{(1+\eta)g^2(1-\eta)} }=\frac{U_0}{g-\sqrt{1-\eta^2} }" align="absmiddle" class="latex-formula">
Отсюда
Δt:
![\Delta t=t_1+t_2=\frac{U_0}{g(1+\eta)}+\frac{U_0}{g-\sqrt{1-\eta^2} }=\frac{U_0}{g}(\frac{1}{1+\eta}+\frac{1}{\sqrt{1-\eta^2} }) \Delta t=t_1+t_2=\frac{U_0}{g(1+\eta)}+\frac{U_0}{g-\sqrt{1-\eta^2} }=\frac{U_0}{g}(\frac{1}{1+\eta}+\frac{1}{\sqrt{1-\eta^2} })](https://tex.z-dn.net/?f=%5CDelta%20t%3Dt_1%2Bt_2%3D%5Cfrac%7BU_0%7D%7Bg%281%2B%5Ceta%29%7D%2B%5Cfrac%7BU_0%7D%7Bg-%5Csqrt%7B1-%5Ceta%5E2%7D%20%7D%3D%5Cfrac%7BU_0%7D%7Bg%7D%28%5Cfrac%7B1%7D%7B1%2B%5Ceta%7D%2B%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%5Ceta%5E2%7D%20%7D%29)
Подставив значения имеем:
![\Delta t=\frac{32}{10}(\frac{1}{1,6}+\frac{1}{0,8})=6\ \ c \Delta t=\frac{32}{10}(\frac{1}{1,6}+\frac{1}{0,8})=6\ \ c](https://tex.z-dn.net/?f=%5CDelta%20t%3D%5Cfrac%7B32%7D%7B10%7D%28%5Cfrac%7B1%7D%7B1%2C6%7D%2B%5Cfrac%7B1%7D%7B0%2C8%7D%29%3D6%5C%20%5C%20c)
Ответ: 6c