a)\frac{1}{2} \\log_{16}(4x+3)>log_{16}(-4)\\4x+3>-4\\x>-\frac{7}{4}" alt="log_{16}(4x+3)>\frac{1}{2} \\log_{16}(4x+3)>log_{16}(-4)\\4x+3>-4\\x>-\frac{7}{4}" align="absmiddle" class="latex-formula">
б)
в)
0}} \right.\\\left \{ {{log_{4}x<3} \atop {log_{4}x>-2}} \right. \\\left \{ {{log_{4}xlog_{4}\frac{1}{16} }} \right. \\\left \{ {{x<64} \atop {x>\frac{1}{16} }} \right. \\(1/16 ; 64)" alt="\left \{ {{log_{4}x-3<0} \atop {log_{4}x+2>0}} \right.\\\left \{ {{log_{4}x<3} \atop {log_{4}x>-2}} \right. \\\left \{ {{log_{4}xlog_{4}\frac{1}{16} }} \right. \\\left \{ {{x<64} \atop {x>\frac{1}{16} }} \right. \\(1/16 ; 64)" align="absmiddle" class="latex-formula">
г) log_{2}(2-7x)\\3x-1>2-7x\\10x>3\\x>\frac{3}{10}" alt="log_{2}(3x-1)>log_{2}(2-7x)\\3x-1>2-7x\\10x>3\\x>\frac{3}{10}" align="absmiddle" class="latex-formula">