Пошаговое объяснение:
2\; \; \Ledtrightarrow \; \; \; \left [ {{x+3>2} \atop {x+3<-2}} \right. \; \; ,\; \; \left [ {{x>-1} \atop {x<-5}} \right.\; \; ,\; \; x\in (-\infty ,-5)\cup (-1,+\infty )\\\\|x+2|>5\; \; \ledtrightarrow \; \; \; \left [ {{x+2>5} \atop {x+2<-5}} \right. \; \; ,\; \; \left [ {{x>3} \atop {x<-7}} \right. \; \; \Rightarrow \; \; x\in (-\infty ,-7)\cup (3,+\infty )\\\\|x+2|<5\; \; \Leftrightarrow \; \; -5<x+2<5\; \; ,\; \; -7<x<3" alt="|x-4|<3\; \; \Leftrightarrow \; \; \; -3<x-4<3\; \; ,\; \; 1<x<7\\\\|x+3|>2\; \; \Ledtrightarrow \; \; \; \left [ {{x+3>2} \atop {x+3<-2}} \right. \; \; ,\; \; \left [ {{x>-1} \atop {x<-5}} \right.\; \; ,\; \; x\in (-\infty ,-5)\cup (-1,+\infty )\\\\|x+2|>5\; \; \ledtrightarrow \; \; \; \left [ {{x+2>5} \atop {x+2<-5}} \right. \; \; ,\; \; \left [ {{x>3} \atop {x<-7}} \right. \; \; \Rightarrow \; \; x\in (-\infty ,-7)\cup (3,+\infty )\\\\|x+2|<5\; \; \Leftrightarrow \; \; -5<x+2<5\; \; ,\; \; -7<x<3" align="absmiddle" class="latex-formula">
a\; \; \Leftrightarrow \; \; \left [ {{x>a} \atop {x<-a}} \right. \; \; \star \; \qquad ////////\; (-a)----(a)\; ////////" alt="\star \; \; |x|<a\; \; \Leftrightarrow \; \; -a<x<a\; \; \star \qquad \; ---(-a)\; ////////\; (a)---\\\\\star \; \; |x|>a\; \; \Leftrightarrow \; \; \left [ {{x>a} \atop {x<-a}} \right. \; \; \star \; \qquad ////////\; (-a)----(a)\; ////////" align="absmiddle" class="latex-formula">