В тригонометрии если не знаешь, что делать -> используй универсальную тригонометрическую подстановку
sin x = 2t / (t^2 + 1)
cos x = (1 - t^2) / (t^2 + 1)
t = tg(x/2)
Подставляем и сразу домножаем на (t^2 + 1)^2:
10t(t^2 + 1) - 8t(1 - t^2) + 5(1 - t^2)(1 + t^2) = 5(t^2 + 1)^2
2 t - 10 t^2 + 18 t^3 - 10 t^4 = 0
t(5t^3 - 9t^2 + 5t - 1) = 0
Один из корней второй скобки легко угадать, это t = 1. Деля вторую скобку на (t - 1) например, столбиком, узнаём разложение на множители
5t^3 - 9t^2 + 5t - 1 = (t - 1)(5t^2 - 4t + 1)
t(t - 1)(5t^2 - 4t + 1) = 0
t = 0 или t = 1 (у квадратного трёхчлена корней нет)
tg(x/2) = 0
x/2 = pi*n
x = 2pi*n
tg(x/2) = 1
x/2 = pi/4 + pi*m
x = pi/2 + 2pi*m
Ответ. x = 2pi*n, x = pi/2 + 2pi*m.