Воспользуемся свойствами производной:
( C•u )' = C•(u)'
( u + v )' = u' + v'
( u • v )' = u'•v + u•v'
1) f'(x) = ( (4x + 1)(9 - 3x) )' = (4x + 1)'•(9 - 3x) + (4x + 1)•(9 - 3x)' = 4•(9 - 3x) + (-3)•(4x + 1) = 36 - 12x - 12x - 3 = 33 - 24x
2) f'(x) = ( (3x² + 7)•3,6x³ )' = (3x² + 7)'•3,6x³ + (3x² + 7)•(3,6x³)' = 6x•3,6x³ + (3x² + 7)•10,8x² = 21,6x⁴ + 32,4x⁴ + 75,6x² = 54x⁴ + 75,6x²