a)
\left \{ {{x_1=0} \atop {x_2=-\frac{1}{5} }} \right." alt="5x^2+x=0\\ x(5x+1)=0\\ \\ \left \{ {{x_1=0} \atop {5x+1=0}} \right. =>\left \{ {{x_1=0} \atop {x_2=-\frac{1}{5} }} \right." align="absmiddle" class="latex-formula">
б)
\left \{ {{x_1=2} \atop {x_2=\frac{22}{9} }} \right." alt="(6-3x)^2=4x-8\\36-36x+9x^2-4x+8=0\\ 44-40x+9x^2=0\\ 9x^2-40x+44=0\\ 9x^2-18x-22x+44=0\\ 9x(x-2)-22(x-2)=0\\(x-2)(9x-22)=0\\\\\left \{ {{x-2=0} \atop {9x-22=0}} \right. =>\left \{ {{x_1=2} \atop {x_2=\frac{22}{9} }} \right." align="absmiddle" class="latex-formula">
можно было решить дискриминантом
в)