Речь идет о правильных многоугольниках
1) S₄ = 25 - площадь квадрата
Найдем a₄, используя формулу для нахождения площади квадрата (S)
S = a₄²
25 = a₄²
a₄ = √25 = 5
Отсюда P = 4a₄ = 4 * 5 = 20
Найдем R, используя формулу
a₄ = R√2
5 = R√2
![\displaystyle\tt R=\frac{5\times\sqrt{2} }{\sqrt{2}\times\sqrt{2} } =\frac{5\sqrt{2} }{2} \displaystyle\tt R=\frac{5\times\sqrt{2} }{\sqrt{2}\times\sqrt{2} } =\frac{5\sqrt{2} }{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20R%3D%5Cfrac%7B5%5Ctimes%5Csqrt%7B2%7D%20%7D%7B%5Csqrt%7B2%7D%5Ctimes%5Csqrt%7B2%7D%20%7D%20%3D%5Cfrac%7B5%5Csqrt%7B2%7D%20%7D%7B2%7D)
Найдем r, используя формулу
![\displaystyle\tt r=Rcos\frac{180}{n}\\\\\\r=\frac{5\sqrt{2} }{2} cos\frac{180}{4} =\frac{5\sqrt{2} }{2}cos45=\\\\\\=\frac{5\sqrt{2} }{2}\times \frac{\sqrt{2} }{2} =\frac{10}{4}=2.5 \displaystyle\tt r=Rcos\frac{180}{n}\\\\\\r=\frac{5\sqrt{2} }{2} cos\frac{180}{4} =\frac{5\sqrt{2} }{2}cos45=\\\\\\=\frac{5\sqrt{2} }{2}\times \frac{\sqrt{2} }{2} =\frac{10}{4}=2.5](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20r%3DRcos%5Cfrac%7B180%7D%7Bn%7D%5C%5C%5C%5C%5C%5Cr%3D%5Cfrac%7B5%5Csqrt%7B2%7D%20%7D%7B2%7D%20cos%5Cfrac%7B180%7D%7B4%7D%20%3D%5Cfrac%7B5%5Csqrt%7B2%7D%20%7D%7B2%7Dcos45%3D%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B5%5Csqrt%7B2%7D%20%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B2%7D%20%3D%5Cfrac%7B10%7D%7B4%7D%3D2.5)
![\displaystyle\tt OTBET:~a_4=5; ~r=2.5;~R=\frac{5\sqrt{2} }{2};\\\\P=20 \displaystyle\tt OTBET:~a_4=5; ~r=2.5;~R=\frac{5\sqrt{2} }{2};\\\\P=20](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20OTBET%3A~a_4%3D5%3B%20~r%3D2.5%3B~R%3D%5Cfrac%7B5%5Csqrt%7B2%7D%20%7D%7B2%7D%3B%5C%5C%5C%5CP%3D20)
2) Если P₃ = 12, то
a₃ = P₃/3 = 12/3 = 4
Найдем R, используя формулу
a₃ = R√3
4 = R√3
![\displaystyle\tt R=\frac{4\times\sqrt{3} }{\sqrt{3}\times\sqrt{3} } =\frac{4\sqrt{3}}{3} \displaystyle\tt R=\frac{4\times\sqrt{3} }{\sqrt{3}\times\sqrt{3} } =\frac{4\sqrt{3}}{3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20R%3D%5Cfrac%7B4%5Ctimes%5Csqrt%7B3%7D%20%7D%7B%5Csqrt%7B3%7D%5Ctimes%5Csqrt%7B3%7D%20%7D%20%3D%5Cfrac%7B4%5Csqrt%7B3%7D%7D%7B3%7D)
Найдем r, используя формулу
![\displaystyle\tt r=Rcos\frac{180}{n}\\\\\\r=\frac{4\sqrt{3}}{3}cos\frac{180}{3} =\frac{4\sqrt{3}}{3}cos60=\\\\\\=\frac{4\sqrt{3}}{3}\times \frac{1}{2} =\frac{4\sqrt{3} }{6} =\frac{2\sqrt{3} }{3} \displaystyle\tt r=Rcos\frac{180}{n}\\\\\\r=\frac{4\sqrt{3}}{3}cos\frac{180}{3} =\frac{4\sqrt{3}}{3}cos60=\\\\\\=\frac{4\sqrt{3}}{3}\times \frac{1}{2} =\frac{4\sqrt{3} }{6} =\frac{2\sqrt{3} }{3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20r%3DRcos%5Cfrac%7B180%7D%7Bn%7D%5C%5C%5C%5C%5C%5Cr%3D%5Cfrac%7B4%5Csqrt%7B3%7D%7D%7B3%7Dcos%5Cfrac%7B180%7D%7B3%7D%20%3D%5Cfrac%7B4%5Csqrt%7B3%7D%7D%7B3%7Dcos60%3D%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B4%5Csqrt%7B3%7D%7D%7B3%7D%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%20%3D%5Cfrac%7B4%5Csqrt%7B3%7D%20%7D%7B6%7D%20%3D%5Cfrac%7B2%5Csqrt%7B3%7D%20%7D%7B3%7D)
Найдём S, используя формулу
![\displaystyle S=\frac{1}{2}Pr\\\\\\S=\frac{12\times \displaystyle\frac{2\sqrt{3} }{3} }{2} =6\times \frac{2\sqrt{3} }{3} =\\\\\\=2\times 2\sqrt{3} =4\sqrt{3} \displaystyle S=\frac{1}{2}Pr\\\\\\S=\frac{12\times \displaystyle\frac{2\sqrt{3} }{3} }{2} =6\times \frac{2\sqrt{3} }{3} =\\\\\\=2\times 2\sqrt{3} =4\sqrt{3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20S%3D%5Cfrac%7B1%7D%7B2%7DPr%5C%5C%5C%5C%5C%5CS%3D%5Cfrac%7B12%5Ctimes%20%5Cdisplaystyle%5Cfrac%7B2%5Csqrt%7B3%7D%20%7D%7B3%7D%20%7D%7B2%7D%20%3D6%5Ctimes%20%5Cfrac%7B2%5Csqrt%7B3%7D%20%7D%7B3%7D%20%3D%5C%5C%5C%5C%5C%5C%3D2%5Ctimes%202%5Csqrt%7B3%7D%20%3D4%5Csqrt%7B3%7D)
![\displaystyle\tt OTBET:~a_3=4;~r=\frac{2\sqrt{3} }{3} ;~R=\frac{4\sqrt{3} }{3} ;\\\\S=4\sqrt{3} \displaystyle\tt OTBET:~a_3=4;~r=\frac{2\sqrt{3} }{3} ;~R=\frac{4\sqrt{3} }{3} ;\\\\S=4\sqrt{3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctt%20OTBET%3A~a_3%3D4%3B~r%3D%5Cfrac%7B2%5Csqrt%7B3%7D%20%7D%7B3%7D%20%3B~R%3D%5Cfrac%7B4%5Csqrt%7B3%7D%20%7D%7B3%7D%20%3B%5C%5C%5C%5CS%3D4%5Csqrt%7B3%7D)