1\; \; \to \; \; net\; kornej\; ,\; t.k.\; |sin(x-\frac{\pi}{4})|\leq 1\\\\Otvet:\; \; x=\frac{\pi}{4}+(-1)^{n}\cdot\frac{\pi }{4}+\pi n\; ,\; n\in Z" alt="sin(x-\frac{\pi}{4})=\frac{\sqrt2}{2}\\\\x-\frac{\pi}{4}=(-1)^{n}\cdot \frac{\pi}{4}+\pi n\; ,\; n\in Z\\\\x=\frac{\pi }{4}+(-1)^{n}\cdot \frac{\pi }{4}+\pi n=\left [ {{\pi n\; ,\; esli\; n=2k-1\; ,\; k\in Z} \atop {\frac{\pi}{2}+\pi n\; ,\; esli\; n=2k\; ,\; k\in Z}} \right. \\\\b)\; \; sinx-cosx=4\\\\2sin(x-\frac{\pi }{4})\cdot \frac{\sqrt2}{2}=4\\\\sin(x-\frac{\pi}{4})=2\sqrt2>1\; \; \to \; \; net\; kornej\; ,\; t.k.\; |sin(x-\frac{\pi}{4})|\leq 1\\\\Otvet:\; \; x=\frac{\pi}{4}+(-1)^{n}\cdot\frac{\pi }{4}+\pi n\; ,\; n\in Z" align="absmiddle" class="latex-formula">