![1)\\a)\;\sqrt{169}-3\sqrt{0,36}=13-3\cdot0,6=13-1,8=11,2\\b)\;\sqrt{3\frac17}\cdot\sqrt{\frac{7}{88}}=\sqrt{\frac{22}7}\cdot\sqrt{\frac7{88}}=\sqrt{\frac{22}7\cdot\frac7{88}}=\sqrt{\frac14}=\frac12\\\\c)\;\sqrt{2^6\cdot5^4}=\sqrt{(2^3\cdot5^2)^2}=2^3\cdot5^2=8\cdot25=200\\d)\;\frac{\sqrt{500}}{\sqrt{10}\cdot\sqrt{32}}=\frac{\sqrt{500}}{\sqrt{10\cdot32}}=\sqrt{\frac{500}{320}}=\sqrt{\frac{25}{16}}=\frac54=1\frac14 1)\\a)\;\sqrt{169}-3\sqrt{0,36}=13-3\cdot0,6=13-1,8=11,2\\b)\;\sqrt{3\frac17}\cdot\sqrt{\frac{7}{88}}=\sqrt{\frac{22}7}\cdot\sqrt{\frac7{88}}=\sqrt{\frac{22}7\cdot\frac7{88}}=\sqrt{\frac14}=\frac12\\\\c)\;\sqrt{2^6\cdot5^4}=\sqrt{(2^3\cdot5^2)^2}=2^3\cdot5^2=8\cdot25=200\\d)\;\frac{\sqrt{500}}{\sqrt{10}\cdot\sqrt{32}}=\frac{\sqrt{500}}{\sqrt{10\cdot32}}=\sqrt{\frac{500}{320}}=\sqrt{\frac{25}{16}}=\frac54=1\frac14](https://tex.z-dn.net/?f=1%29%5C%5Ca%29%5C%3B%5Csqrt%7B169%7D-3%5Csqrt%7B0%2C36%7D%3D13-3%5Ccdot0%2C6%3D13-1%2C8%3D11%2C2%5C%5Cb%29%5C%3B%5Csqrt%7B3%5Cfrac17%7D%5Ccdot%5Csqrt%7B%5Cfrac%7B7%7D%7B88%7D%7D%3D%5Csqrt%7B%5Cfrac%7B22%7D7%7D%5Ccdot%5Csqrt%7B%5Cfrac7%7B88%7D%7D%3D%5Csqrt%7B%5Cfrac%7B22%7D7%5Ccdot%5Cfrac7%7B88%7D%7D%3D%5Csqrt%7B%5Cfrac14%7D%3D%5Cfrac12%5C%5C%5C%5Cc%29%5C%3B%5Csqrt%7B2%5E6%5Ccdot5%5E4%7D%3D%5Csqrt%7B%282%5E3%5Ccdot5%5E2%29%5E2%7D%3D2%5E3%5Ccdot5%5E2%3D8%5Ccdot25%3D200%5C%5Cd%29%5C%3B%5Cfrac%7B%5Csqrt%7B500%7D%7D%7B%5Csqrt%7B10%7D%5Ccdot%5Csqrt%7B32%7D%7D%3D%5Cfrac%7B%5Csqrt%7B500%7D%7D%7B%5Csqrt%7B10%5Ccdot32%7D%7D%3D%5Csqrt%7B%5Cfrac%7B500%7D%7B320%7D%7D%3D%5Csqrt%7B%5Cfrac%7B25%7D%7B16%7D%7D%3D%5Cfrac54%3D1%5Cfrac14)
![2)\\a)\;x^2=13\\x=\pm\sqrt{13}\\\\b)\;x^2+1=0\\x^2=-1\;-\;KOPHEu\;HET.\\\\c)\;\sqrt x=4\\x=\pm2\\\\d)\;\sqrt x=-9\\x=81 2)\\a)\;x^2=13\\x=\pm\sqrt{13}\\\\b)\;x^2+1=0\\x^2=-1\;-\;KOPHEu\;HET.\\\\c)\;\sqrt x=4\\x=\pm2\\\\d)\;\sqrt x=-9\\x=81](https://tex.z-dn.net/?f=2%29%5C%5Ca%29%5C%3Bx%5E2%3D13%5C%5Cx%3D%5Cpm%5Csqrt%7B13%7D%5C%5C%5C%5Cb%29%5C%3Bx%5E2%2B1%3D0%5C%5Cx%5E2%3D-1%5C%3B-%5C%3BKOPHEu%5C%3BHET.%5C%5C%5C%5Cc%29%5C%3B%5Csqrt%20x%3D4%5C%5Cx%3D%5Cpm2%5C%5C%5C%5Cd%29%5C%3B%5Csqrt%20x%3D-9%5C%5Cx%3D81)
![3)\\a)\;2\sqrt3-\sqrt{48}+\sqrt{75}=2\sqrt3-\sqrt{16\cdot3}+\sqrt{25\cdot3}=2\sqrt3-4\sqrt3+5\sqrt3=3\sqrt3\\\\b)\;\left(\sqrt{63}-\sqrt{28}\right)\cdot\sqrt7=\left(\sqrt{9\cdot7}-\sqrt{4\cdot7}\right)\cdot\sqrt7=\left(3\sqrt7-2\sqrt7\right)\cdot\sqrt7=\sqrt7\cdot\sqrt7=7\\\\c)\;(3\sqrt6-4)^2=(3\sqrt6)^2-2\cdot4\cdot3\sqrt6+4^2=9\cdot6-24\sqrt6+16=70-24\sqrt6\\\\d)\;(2\sqrt7-3\sqrt2)(2\sqrt7+3\sqrt2)=(2\sqrt7)^2-(3\sqrt2)^2=4\cdot7-9\cdot2=28-18=10 3)\\a)\;2\sqrt3-\sqrt{48}+\sqrt{75}=2\sqrt3-\sqrt{16\cdot3}+\sqrt{25\cdot3}=2\sqrt3-4\sqrt3+5\sqrt3=3\sqrt3\\\\b)\;\left(\sqrt{63}-\sqrt{28}\right)\cdot\sqrt7=\left(\sqrt{9\cdot7}-\sqrt{4\cdot7}\right)\cdot\sqrt7=\left(3\sqrt7-2\sqrt7\right)\cdot\sqrt7=\sqrt7\cdot\sqrt7=7\\\\c)\;(3\sqrt6-4)^2=(3\sqrt6)^2-2\cdot4\cdot3\sqrt6+4^2=9\cdot6-24\sqrt6+16=70-24\sqrt6\\\\d)\;(2\sqrt7-3\sqrt2)(2\sqrt7+3\sqrt2)=(2\sqrt7)^2-(3\sqrt2)^2=4\cdot7-9\cdot2=28-18=10](https://tex.z-dn.net/?f=3%29%5C%5Ca%29%5C%3B2%5Csqrt3-%5Csqrt%7B48%7D%2B%5Csqrt%7B75%7D%3D2%5Csqrt3-%5Csqrt%7B16%5Ccdot3%7D%2B%5Csqrt%7B25%5Ccdot3%7D%3D2%5Csqrt3-4%5Csqrt3%2B5%5Csqrt3%3D3%5Csqrt3%5C%5C%5C%5Cb%29%5C%3B%5Cleft%28%5Csqrt%7B63%7D-%5Csqrt%7B28%7D%5Cright%29%5Ccdot%5Csqrt7%3D%5Cleft%28%5Csqrt%7B9%5Ccdot7%7D-%5Csqrt%7B4%5Ccdot7%7D%5Cright%29%5Ccdot%5Csqrt7%3D%5Cleft%283%5Csqrt7-2%5Csqrt7%5Cright%29%5Ccdot%5Csqrt7%3D%5Csqrt7%5Ccdot%5Csqrt7%3D7%5C%5C%5C%5Cc%29%5C%3B%283%5Csqrt6-4%29%5E2%3D%283%5Csqrt6%29%5E2-2%5Ccdot4%5Ccdot3%5Csqrt6%2B4%5E2%3D9%5Ccdot6-24%5Csqrt6%2B16%3D70-24%5Csqrt6%5C%5C%5C%5Cd%29%5C%3B%282%5Csqrt7-3%5Csqrt2%29%282%5Csqrt7%2B3%5Csqrt2%29%3D%282%5Csqrt7%29%5E2-%283%5Csqrt2%29%5E2%3D4%5Ccdot7-9%5Ccdot2%3D28-18%3D10)
![4)\\a)\;3\sqrt7=\sqrt{9\cdot7}=\sqrt{63}\\7\sqrt3=\sqrt{49\cdot3}=\sqrt{147}\\\sqrt{63}<\sqrt{147}\Rightarrow3\sqrt7<7\sqrt3\\\\b)\;6\sqrt{\frac7{18}}=\sqrt{36\cdot\frac7{18}}=\sqrt{2\cdot7}=\sqrt{14}\\\frac13\sqrt{108}=\sqrt{\frac19\cdot108}=\sqrt{36}\\\sqrt{14}<\sqrt{36}\Rightarrow6\sqrt{\frac7{18}}<\frac13\sqrt{108} 4)\\a)\;3\sqrt7=\sqrt{9\cdot7}=\sqrt{63}\\7\sqrt3=\sqrt{49\cdot3}=\sqrt{147}\\\sqrt{63}<\sqrt{147}\Rightarrow3\sqrt7<7\sqrt3\\\\b)\;6\sqrt{\frac7{18}}=\sqrt{36\cdot\frac7{18}}=\sqrt{2\cdot7}=\sqrt{14}\\\frac13\sqrt{108}=\sqrt{\frac19\cdot108}=\sqrt{36}\\\sqrt{14}<\sqrt{36}\Rightarrow6\sqrt{\frac7{18}}<\frac13\sqrt{108}](https://tex.z-dn.net/?f=4%29%5C%5Ca%29%5C%3B3%5Csqrt7%3D%5Csqrt%7B9%5Ccdot7%7D%3D%5Csqrt%7B63%7D%5C%5C7%5Csqrt3%3D%5Csqrt%7B49%5Ccdot3%7D%3D%5Csqrt%7B147%7D%5C%5C%5Csqrt%7B63%7D%3C%5Csqrt%7B147%7D%5CRightarrow3%5Csqrt7%3C7%5Csqrt3%5C%5C%5C%5Cb%29%5C%3B6%5Csqrt%7B%5Cfrac7%7B18%7D%7D%3D%5Csqrt%7B36%5Ccdot%5Cfrac7%7B18%7D%7D%3D%5Csqrt%7B2%5Ccdot7%7D%3D%5Csqrt%7B14%7D%5C%5C%5Cfrac13%5Csqrt%7B108%7D%3D%5Csqrt%7B%5Cfrac19%5Ccdot108%7D%3D%5Csqrt%7B36%7D%5C%5C%5Csqrt%7B14%7D%3C%5Csqrt%7B36%7D%5CRightarrow6%5Csqrt%7B%5Cfrac7%7B18%7D%7D%3C%5Cfrac13%5Csqrt%7B108%7D)
![\ldots\\6)\\a)\;\frac{49-b}{7+\sqrt b}=\frac{(7-\sqrt b)(7\sqrt b)}{7+\sqrt b}=7-\sqrt b\\\\b)\;\frac{\sqrt b}{b+2\sqrt b}=\frac{\sqrt b}{\sqrt b(\sqrt b+2)}=\frac1{\sqrt b+2}\\\\c)\;\frac{9-b}{9-6\sqrt b+b}=\frac{(3-\sqrt b)(3+\sqrt b)}{(3-\sqrt b)^2}=\frac{3+\sqrt b}{3-\sqrt b} \ldots\\6)\\a)\;\frac{49-b}{7+\sqrt b}=\frac{(7-\sqrt b)(7\sqrt b)}{7+\sqrt b}=7-\sqrt b\\\\b)\;\frac{\sqrt b}{b+2\sqrt b}=\frac{\sqrt b}{\sqrt b(\sqrt b+2)}=\frac1{\sqrt b+2}\\\\c)\;\frac{9-b}{9-6\sqrt b+b}=\frac{(3-\sqrt b)(3+\sqrt b)}{(3-\sqrt b)^2}=\frac{3+\sqrt b}{3-\sqrt b}](https://tex.z-dn.net/?f=%5Cldots%5C%5C6%29%5C%5Ca%29%5C%3B%5Cfrac%7B49-b%7D%7B7%2B%5Csqrt%20b%7D%3D%5Cfrac%7B%287-%5Csqrt%20b%29%287%5Csqrt%20b%29%7D%7B7%2B%5Csqrt%20b%7D%3D7-%5Csqrt%20b%5C%5C%5C%5Cb%29%5C%3B%5Cfrac%7B%5Csqrt%20b%7D%7Bb%2B2%5Csqrt%20b%7D%3D%5Cfrac%7B%5Csqrt%20b%7D%7B%5Csqrt%20b%28%5Csqrt%20b%2B2%29%7D%3D%5Cfrac1%7B%5Csqrt%20b%2B2%7D%5C%5C%5C%5Cc%29%5C%3B%5Cfrac%7B9-b%7D%7B9-6%5Csqrt%20b%2Bb%7D%3D%5Cfrac%7B%283-%5Csqrt%20b%29%283%2B%5Csqrt%20b%29%7D%7B%283-%5Csqrt%20b%29%5E2%7D%3D%5Cfrac%7B3%2B%5Csqrt%20b%7D%7B3-%5Csqrt%20b%7D)
![7)\\a)\;\frac4{3\sqrt5}=\frac{4\cdot\sqrt5}{3\sqrt5\cdot\sqrt5}=\frac{4\sqrt5}{3\cdot5}=\frac{4\sqrt5}{15}\\\\b)\;\frac{12}{\sqrt{15}+3}=\frac{12\cdot(\sqrt{15}-3)}{(\sqrt{15}+3)(\sqrt{15}-3)}=\frac{12(\sqrt15-3)}{15-9}=\frac{12(\sqrt{15}-3)}6=2\sqrt{15}-6 7)\\a)\;\frac4{3\sqrt5}=\frac{4\cdot\sqrt5}{3\sqrt5\cdot\sqrt5}=\frac{4\sqrt5}{3\cdot5}=\frac{4\sqrt5}{15}\\\\b)\;\frac{12}{\sqrt{15}+3}=\frac{12\cdot(\sqrt{15}-3)}{(\sqrt{15}+3)(\sqrt{15}-3)}=\frac{12(\sqrt15-3)}{15-9}=\frac{12(\sqrt{15}-3)}6=2\sqrt{15}-6](https://tex.z-dn.net/?f=7%29%5C%5Ca%29%5C%3B%5Cfrac4%7B3%5Csqrt5%7D%3D%5Cfrac%7B4%5Ccdot%5Csqrt5%7D%7B3%5Csqrt5%5Ccdot%5Csqrt5%7D%3D%5Cfrac%7B4%5Csqrt5%7D%7B3%5Ccdot5%7D%3D%5Cfrac%7B4%5Csqrt5%7D%7B15%7D%5C%5C%5C%5Cb%29%5C%3B%5Cfrac%7B12%7D%7B%5Csqrt%7B15%7D%2B3%7D%3D%5Cfrac%7B12%5Ccdot%28%5Csqrt%7B15%7D-3%29%7D%7B%28%5Csqrt%7B15%7D%2B3%29%28%5Csqrt%7B15%7D-3%29%7D%3D%5Cfrac%7B12%28%5Csqrt15-3%29%7D%7B15-9%7D%3D%5Cfrac%7B12%28%5Csqrt%7B15%7D-3%29%7D6%3D2%5Csqrt%7B15%7D-6)
![8)\\a)\;\sqrt{13a^2}=-a\sqrt{13}\\b)\;\sqrt{63a^4}=\sqrt{7\cdot9a^4}=3a^2\sqrt7\\c)\;\sqrt{-a^3}=-a\sqrt a\\d)\;\sqrt{-a^3c^6}=ac^3\sqrt a 8)\\a)\;\sqrt{13a^2}=-a\sqrt{13}\\b)\;\sqrt{63a^4}=\sqrt{7\cdot9a^4}=3a^2\sqrt7\\c)\;\sqrt{-a^3}=-a\sqrt a\\d)\;\sqrt{-a^3c^6}=ac^3\sqrt a](https://tex.z-dn.net/?f=8%29%5C%5Ca%29%5C%3B%5Csqrt%7B13a%5E2%7D%3D-a%5Csqrt%7B13%7D%5C%5Cb%29%5C%3B%5Csqrt%7B63a%5E4%7D%3D%5Csqrt%7B7%5Ccdot9a%5E4%7D%3D3a%5E2%5Csqrt7%5C%5Cc%29%5C%3B%5Csqrt%7B-a%5E3%7D%3D-a%5Csqrt%20a%5C%5Cd%29%5C%3B%5Csqrt%7B-a%5E3c%5E6%7D%3Dac%5E3%5Csqrt%20a)
0\\6-\sqrt{47}=\sqrt{36}-\sqrt{47}<0\\\\\sqrt{\left(8-\sqrt{47}\right)^2}+\sqrt{\left(6-\sqrt{47}\right)^2}=8-\sqrt{47}-6+\sqrt{47}=2" alt="9)\\\sqrt{\left(8-\sqrt{47}\right)^2}+\sqrt{\left(6-\sqrt{47}\right)^2}\\\\8-\sqrt{47}=\sqrt{64}-\sqrt{47}>0\\6-\sqrt{47}=\sqrt{36}-\sqrt{47}<0\\\\\sqrt{\left(8-\sqrt{47}\right)^2}+\sqrt{\left(6-\sqrt{47}\right)^2}=8-\sqrt{47}-6+\sqrt{47}=2" align="absmiddle" class="latex-formula">