Ответ:
81
Пошаговое пояснение:
![\displaystyle 3^{1,8}*81^{0,5}:\sqrt[5]{3^{-1} }=3^{1,8}*(3^{4}) ^{0,5}:3^{-\frac{1}{5} }=3^{1,8+2-(-0,2)}=3^{4}=81 \displaystyle 3^{1,8}*81^{0,5}:\sqrt[5]{3^{-1} }=3^{1,8}*(3^{4}) ^{0,5}:3^{-\frac{1}{5} }=3^{1,8+2-(-0,2)}=3^{4}=81](https://tex.z-dn.net/?f=%5Cdisplaystyle%203%5E%7B1%2C8%7D%2A81%5E%7B0%2C5%7D%3A%5Csqrt%5B5%5D%7B3%5E%7B-1%7D%20%7D%3D3%5E%7B1%2C8%7D%2A%283%5E%7B4%7D%29%20%5E%7B0%2C5%7D%3A3%5E%7B-%5Cfrac%7B1%7D%7B5%7D%20%7D%3D3%5E%7B1%2C8%2B2-%28-0%2C2%29%7D%3D3%5E%7B4%7D%3D81)
При умножении степеней с одинаковыми основаниями показатели степеней складываются, при делении - вычитаются. При возведении степени в степень показатели степеней перемножаются. При извлечении квадратного корня из степени показатель степени подкоренного выражения является числителем, а показатель степени корня - знаменателем. 81 = 3⁴