В трапеции ABCD с основаниями BC и AD проведены диагонали AC и BD пересекаются в точке О....

0 голосов
16 просмотров
В трапеции ABCD с основаниями BC и AD проведены диагонали AC и BD пересекаются в точке О. Докажите равенство площадей треугольников AОВ и CОD.

Геометрия (286 баллов) | 16 просмотров
Дано ответов: 2
0 голосов

Площадь ABD =S AOB + S AOD = 1/2* AD*h, где h высота треугольника ( и трапеции) проведенная  к AD.S ACD = S COD + S AOD = 1/2*AD*hиз двух равенств следует что S ABD = S ACD => S AOB + S AOD= S COD + S AOD => S AOB = S COD

(14 баллов)
0 голосов

Для начала равны площади cad и bda (высоты равны а основание общее) далее aod - общий треугольник и поэтому cad-aod=bda-aod то есть aob=cod

(154 баллов)