Мистер Форд написал ** доске 7 последовательных натуральных чисел. Мистер Фокс стёр одно...

0 голосов
73 просмотров

Мистер Форд написал на доске 7 последовательных натуральных чисел. Мистер Фокс стёр одно из них. В итоге, сумма оставшихся чисел стала равна 68. Какое число стёр мистер Фокс?


Математика (28 баллов) | 73 просмотров
0

Сочинение-рассуждение.1.Проблема: что такое семья и чем она дорога каждому из нас?

0

Помоги пж

Дан 1 ответ
0 голосов
Правильный ответ

Ответ:

9.

Пошаговое объяснение:

Пусть n,n+1,n+2,...,n+6 - данные семь последовательных натуральных чисел. Их сумма S7=7*n+21. Обозначим неизвестное стёртое число через n+k, где k может быть любым целым числом от 0 до 6. Сумма оставшихся 6 чисел S6=S7-(n+k)=7*n+21-n-k=6*n+21-k. По условию, 6*n+21-k=68, откуда 6*n-k=47. Так как k≤6, то 6*n=47+k≤53. Но так как число n - натуральное, то натуральным будет и число 6*n. Таким образом, мы пришли к неравенству 47≤6*n≤53, которое верно лишь при n=8. Из условия 6*n-k=47 находим k=1. Значит, стёртым числом является 8+1=9. Проверка: 8+10+11+12+13+14=68. Ответ: число 9.

(91.0k баллов)
0

ПОСЛЕДОВАТЕЛЬНЫХ

0

*А?*

0

И в чём вы видите ошибку?

0

Похоже, что вы сами не понимаете, что такое последовательные натуральные числа.

0

спасибо большое за помощь

0

и нет никакой ошибки я сам проверил

0

Естественно, нет. Я ведь сделал проверку.