** основании AC равнобедренного треугольника ABC взята точка E, а ** боковых сторонах AB...

0 голосов
123 просмотров

На основании AC равнобедренного треугольника ABC взята точка E, а на боковых сторонах AB и BC — точки K и M, так что KE параллельно BC и EM параллельно AB. Какую часть площади треугольника ABC занимает площадь треугольника KEM, если BM : EM = 2 : 3?


Математика (56 баллов) | 123 просмотров
Дан 1 ответ
0 голосов

Ответ:

6/25

Пошаговое объяснение:

Так как КЕ параллельно ВС и ЕМ параллельно АВ, то мы можем утверждать что это среднии линии для треугольников АВС с основаниями АВ и ВС. Так как это равнобедренный треугольник, то ЕМ = КЕ. Значит мы имеем равнобедренный треугольник КЕМ. ВМ : ЕМ= ВМ : МС, так сторона ВС=ВА по условию. Основание треугольника КМ тоже является средней линией треугольника АВС с основанием АС. Отношение средней линии и основание равно 2/5(Так как у нас 5 частей 3+2 и 2 части это средняя линия). Рассматривая МЕ  и  КЕ как средней линии треугольников, мы получаем соотношение средней линии к основанию 3/5.

Площадь треугольника равна 1/2*основание*h

Основание треугольника КМЕ в 2/5 раза больше чем основание треугольника АВС. Высота в 3/5 раза больше. Получаем площадь малого треугольника:

1/2 * AC*2/5 *h*3/5=1/2 AC * h*6/25

6/25 часть

(290 баллов)