0\; \; ,\\\\sin(-\frac{\pi}{5})=-sin\frac{\pi}{5}<0\; \; \; \to \; \; sin\frac{\pi}{5}>-sin\frac{\pi}{5}\\\\4)\; \; 4\, radiana\approx 229,2^\circ\in 3\; chetvert\; \; \to \; \; tg4>0\\\\tg(-4)=-tg4<0\; \; \to \; \; \; tg(-4)<tg4\\\\5)\; \; \frac{\pi}{12}=15^\circ \in 1\; chetvert\; \; \; \to \; \; cos\frac{\pi}{12}>0" alt="\boxed {sin(-\alpha )=-sin\alpha \; \; ,\; \; cos(-\alpha )=cos\alpha \; \; ,\; \; tg(-\alpha )=-tg\alpha }\\\\\\3)\; \; \frac{\pi}{5}=36^\circ \in 1\; chetvert\; \; \; \to \; \; \; sin\frac{\pi}{5}>0\; \; ,\\\\sin(-\frac{\pi}{5})=-sin\frac{\pi}{5}<0\; \; \; \to \; \; sin\frac{\pi}{5}>-sin\frac{\pi}{5}\\\\4)\; \; 4\, radiana\approx 229,2^\circ\in 3\; chetvert\; \; \to \; \; tg4>0\\\\tg(-4)=-tg4<0\; \; \to \; \; \; tg(-4)<tg4\\\\5)\; \; \frac{\pi}{12}=15^\circ \in 1\; chetvert\; \; \; \to \; \; cos\frac{\pi}{12}>0" align="absmiddle" class="latex-formula">