0\; \; ,\\\\sin(-\frac{\pi}{5})=-sin\frac{\pi}{5}<0\; \; \; \to \; \; sin\frac{\pi}{5}>-sin\frac{\pi}{5}\\\\4)\; \; 4\, radiana\approx 229,2^\circ\in 3\; chetvert\; \; \to \; \; tg4>0\\\\tg(-4)=-tg4<0\; \; \to \; \; \; tg(-4)<tg4\\\\5)\; \; \frac{\pi}{12}=15^\circ \in 1\; chetvert\; \; \; \to \; \; cos\frac{\pi}{12}>0" alt="\boxed {sin(-\alpha )=-sin\alpha \; \; ,\; \; cos(-\alpha )=cos\alpha \; \; ,\; \; tg(-\alpha )=-tg\alpha }\\\\\\3)\; \; \frac{\pi}{5}=36^\circ \in 1\; chetvert\; \; \; \to \; \; \; sin\frac{\pi}{5}>0\; \; ,\\\\sin(-\frac{\pi}{5})=-sin\frac{\pi}{5}<0\; \; \; \to \; \; sin\frac{\pi}{5}>-sin\frac{\pi}{5}\\\\4)\; \; 4\, radiana\approx 229,2^\circ\in 3\; chetvert\; \; \to \; \; tg4>0\\\\tg(-4)=-tg4<0\; \; \to \; \; \; tg(-4)<tg4\\\\5)\; \; \frac{\pi}{12}=15^\circ \in 1\; chetvert\; \; \; \to \; \; cos\frac{\pi}{12}>0" align="absmiddle" class="latex-formula">
![cos(-\frac{\pi}{12})=cos\frac{\pi}{12}\\\\6)\; \; tg(-\frac{\pi}{4})+cos(-\frac{\pi}{4})+sin(-\frac{\pi}{4})=-tg\frac{\pi}{4}+cos\frac{\pi}{4}-sin\frac{\pi}{4}=\\\\=-1+\frac{\sqrt2}{2}-\frac{\sqrt2}{2}=1\\\\7)\; \; sin(-\frac{\pi}{6})-cos(-\frac{\pi}{3})-tg(-\frac{\pi}{6})=-sin\frac{\pi}{6}-cos\frac{\pi}{3}+tg\frac{\pi}{6}=\\\\=-\frac{1}{2}-\frac{1}{2}+\frac{\sqrt3}{3}=-1+\frac{\sqrt3}{3} cos(-\frac{\pi}{12})=cos\frac{\pi}{12}\\\\6)\; \; tg(-\frac{\pi}{4})+cos(-\frac{\pi}{4})+sin(-\frac{\pi}{4})=-tg\frac{\pi}{4}+cos\frac{\pi}{4}-sin\frac{\pi}{4}=\\\\=-1+\frac{\sqrt2}{2}-\frac{\sqrt2}{2}=1\\\\7)\; \; sin(-\frac{\pi}{6})-cos(-\frac{\pi}{3})-tg(-\frac{\pi}{6})=-sin\frac{\pi}{6}-cos\frac{\pi}{3}+tg\frac{\pi}{6}=\\\\=-\frac{1}{2}-\frac{1}{2}+\frac{\sqrt3}{3}=-1+\frac{\sqrt3}{3}](https://tex.z-dn.net/?f=cos%28-%5Cfrac%7B%5Cpi%7D%7B12%7D%29%3Dcos%5Cfrac%7B%5Cpi%7D%7B12%7D%5C%5C%5C%5C6%29%5C%3B%20%5C%3B%20tg%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bcos%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bsin%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3D-tg%5Cfrac%7B%5Cpi%7D%7B4%7D%2Bcos%5Cfrac%7B%5Cpi%7D%7B4%7D-sin%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5C%5C%5C%5C%3D-1%2B%5Cfrac%7B%5Csqrt2%7D%7B2%7D-%5Cfrac%7B%5Csqrt2%7D%7B2%7D%3D1%5C%5C%5C%5C7%29%5C%3B%20%5C%3B%20sin%28-%5Cfrac%7B%5Cpi%7D%7B6%7D%29-cos%28-%5Cfrac%7B%5Cpi%7D%7B3%7D%29-tg%28-%5Cfrac%7B%5Cpi%7D%7B6%7D%29%3D-sin%5Cfrac%7B%5Cpi%7D%7B6%7D-cos%5Cfrac%7B%5Cpi%7D%7B3%7D%2Btg%5Cfrac%7B%5Cpi%7D%7B6%7D%3D%5C%5C%5C%5C%3D-%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt3%7D%7B3%7D%3D-1%2B%5Cfrac%7B%5Csqrt3%7D%7B3%7D)
![8)\; \; sin(-\frac{3\pi}{2})+cos(-11\pi )=-sin\frac{3\pi}{2}+cos\, 11\pi =\\\\=-sin(\pi+\frac{\pi}{2})+cos(\underbrace {12\pi }_{T=2\pi }-\pi )=-(-sin\frac{\pi}{2})+cos(-\pi )=\\\\=+sin\frac{\pi}{2}+cos\pi =1+(-1)=0\\\\9)\; \; tg(-780^\circ )-ctg(-390^\circ )=-tg780^\circ -(-ctg390^\circ )=\\\\=-tg(\underbrace {4\cdot 180^\circ }_{T=180^\circ }+60^\circ )+ctg(\underbrace {2\cdot 180^\circ }_{T=180^\circ }+30^\circ )=-tg60^\circ +ctg30^\circ =\\\\=-\sqrt3+\sqrt3=0 8)\; \; sin(-\frac{3\pi}{2})+cos(-11\pi )=-sin\frac{3\pi}{2}+cos\, 11\pi =\\\\=-sin(\pi+\frac{\pi}{2})+cos(\underbrace {12\pi }_{T=2\pi }-\pi )=-(-sin\frac{\pi}{2})+cos(-\pi )=\\\\=+sin\frac{\pi}{2}+cos\pi =1+(-1)=0\\\\9)\; \; tg(-780^\circ )-ctg(-390^\circ )=-tg780^\circ -(-ctg390^\circ )=\\\\=-tg(\underbrace {4\cdot 180^\circ }_{T=180^\circ }+60^\circ )+ctg(\underbrace {2\cdot 180^\circ }_{T=180^\circ }+30^\circ )=-tg60^\circ +ctg30^\circ =\\\\=-\sqrt3+\sqrt3=0](https://tex.z-dn.net/?f=8%29%5C%3B%20%5C%3B%20sin%28-%5Cfrac%7B3%5Cpi%7D%7B2%7D%29%2Bcos%28-11%5Cpi%20%29%3D-sin%5Cfrac%7B3%5Cpi%7D%7B2%7D%2Bcos%5C%2C%2011%5Cpi%20%3D%5C%5C%5C%5C%3D-sin%28%5Cpi%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%29%2Bcos%28%5Cunderbrace%20%7B12%5Cpi%20%7D_%7BT%3D2%5Cpi%20%7D-%5Cpi%20%29%3D-%28-sin%5Cfrac%7B%5Cpi%7D%7B2%7D%29%2Bcos%28-%5Cpi%20%29%3D%5C%5C%5C%5C%3D%2Bsin%5Cfrac%7B%5Cpi%7D%7B2%7D%2Bcos%5Cpi%20%3D1%2B%28-1%29%3D0%5C%5C%5C%5C9%29%5C%3B%20%5C%3B%20tg%28-780%5E%5Ccirc%20%29-ctg%28-390%5E%5Ccirc%20%29%3D-tg780%5E%5Ccirc%20-%28-ctg390%5E%5Ccirc%20%29%3D%5C%5C%5C%5C%3D-tg%28%5Cunderbrace%20%7B4%5Ccdot%20180%5E%5Ccirc%20%7D_%7BT%3D180%5E%5Ccirc%20%7D%2B60%5E%5Ccirc%20%29%2Bctg%28%5Cunderbrace%20%7B2%5Ccdot%20180%5E%5Ccirc%20%7D_%7BT%3D180%5E%5Ccirc%20%7D%2B30%5E%5Ccirc%20%29%3D-tg60%5E%5Ccirc%20%2Bctg30%5E%5Ccirc%20%3D%5C%5C%5C%5C%3D-%5Csqrt3%2B%5Csqrt3%3D0)