Пусть дан ΔАВС, у которого ∠С =90°, и на гипотенузу АВ опущена высота СЕ. Точка Е лежит на АВ, Против угла в 30° лежит катет АС, равный половине гипотенузы АВ, пусть АС =х, тогда АВ =2х, Но в ΔСВЕ тоже есть угол В =30°, и против него лежит катет СЕ, т.е. высота ΔАВС, которая равна Половине гипотенузы СВ в ΔСВЕ. Из ΔАВС можно найти СВ по теореме ПИфагора, √(2х)²-х²=х√3. Значит, ВЕ равна СВ*cos30°=х√3*√3/2=3х/2.
Тогда АЕ равна 2х -3х/2= х/2. И отношение АЕ/ВЕ = х/2:(3х/2)=1:3
Ответ 1:3