8. В основе конуса проведено хорду длиной 8V2 см (V - квадратный корень) ** расстоянии 4...

0 голосов
42 просмотров

8. В основе конуса проведено хорду длиной 8V2 см (V - квадратный корень) на расстоянии 4 см от центра основания. Найдите объем конуса, если его образующая наклонена к плоскости основания под углом 60 *. 9. В прямоугольном параллелепипеде диагональ d наклонена к плоскости под углом в (бета). Угол между двумя диагоналями основания равен а (альфа). Найдите объем параллелепипеда.


Геометрия (21.0k баллов) | 42 просмотров
Дан 1 ответ
0 голосов

8) Объем конуса равен: V=1/3пR^2H. Из центра проведем отрезки к концам хорды. Получим равнобедренный треугольник,т.к. радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высотой и медианой. От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду попалам, и ее половина равна 4корень из2. Тогда по теореме Пифагора найдем радиус:R= V16+32= V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник. Из этого треугольника найдем высоту. Н=R*tg60=4V3*V3=12см. Теперь найдем объем: V=1/3*п*48*12=192п см^3    

(5.5k баллов)