ОДЗ : x > 0
0\\\\1)\left \{ {{lgx>0} \atop {x^{2}-2x>0 }} \right. \\\\\left \{ {{x>1} \atop {x(x-2)>0}} \right." alt="\frac{lgx}{x^{2}-2x }>0\\\\1)\left \{ {{lgx>0} \atop {x^{2}-2x>0 }} \right. \\\\\left \{ {{x>1} \atop {x(x-2)>0}} \right." align="absmiddle" class="latex-formula">
+ - +
__________₀__________₀__________
0 2
/////////////////// ///////////////////////
_______________₀__________________
1
///////////////////////////////////
x ∈ (2 ; + ∞)
![2)\left \{ {{lgx<0} \atop {x^{2}-2x<0 }} \right.\\\\\left \{ {{x<1} \atop {x(x-2)<0}} \right. 2)\left \{ {{lgx<0} \atop {x^{2}-2x<0 }} \right.\\\\\left \{ {{x<1} \atop {x(x-2)<0}} \right.](https://tex.z-dn.net/?f=2%29%5Cleft%20%5C%7B%20%7B%7Blgx%3C0%7D%20%5Catop%20%7Bx%5E%7B2%7D-2x%3C0%20%7D%7D%20%5Cright.%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bx%3C1%7D%20%5Catop%20%7Bx%28x-2%29%3C0%7D%7D%20%5Cright.)
+ - +
_______________₀_____________₀_________
0 2
////////////////////////////
_______________________₀_______________
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 1
x ∈ (0 ; 1)
Ответ : (0 ; 1) ∪ (2 , + ∞)