Помогите решить, пожалуйста! В соревновании участвуют 11 команд. Сколькими способами...

0 голосов
80 просмотров

Помогите решить, пожалуйста! В соревновании участвуют 11 команд. Сколькими способами можно разместить их на 1, 2 и 3е места? Сколькими способами можно с помощью букв А, В, С обозначить вершины треугольника? В игровой комнате 14 кубиков. Необходимо их разложить в 4 ящика. Сколькими способами можно это сделать? Из множества натуральных чисел от 1 до 20 наугад выбирают одно число. Какова вероятность того, что оно делится на 5 или на 3?Из множества натуральных чисел от 1 до 20 наугад выбирают одно число. Какова вероятность того, что оно делится на 5 или на 3? Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами? Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность того, что во всех ящиках окажется разное число шаров, при условии, что все ящики не пустые.


Алгебра (35 баллов) | 80 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1.

На первое место можно выбрать любую из 11-ти команд, 11 способов,

на второе -любую из 10-ти оставшихся команд, 10 способов,

на третье  -любую из 9-ти оставшихся команд, 9 способов.

Выбор и на первое и на второе и на третье место по правилу умножения

11·10·9=990 способов

2.

три вершины - три места, на три места можно разместить три буквы 3! способами=6 способов.

3.

Выложим все предметы в один ряд, добавим к ним 3  разделяющих предмета. Переставим всеми возможными способами 14 данных одинаковых предметов и3 разделяющих. Каждая такая перестановка определяет один из способов распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем, – во второй ящик, между вторым и третьим  разделителем во третий, предметы расположенные после 3-его  разделителя – в 4-ый ящик. По формуле перестановок с повторениями

P(14,3)=С³₁₇=17!/((17-3)!·3!)=15·16·17/6=680

4.

n=20

делятся на 5:

5; 10; 15; 20  - четыре числа

делятся на 3:

3; 6; 9; 12; 15; 18  -шесть  чисел

Делящихся на 5 или на 3

9 чисел ( 15 повторяется)

m=9

p=m/n=9/20

6.

Всего 10 цифр на два места их можно разместить

10·10=100 способами.

четных цифр 5:

0;2;4;6;8

На одно место

любую из пяти цифр, на второе место - любую из пяти цифр

Всего 5·5=25 способов

p=25/100=0,25

7.

1 шар в одном, два в другом и три в третьем

1шар можно разместить в любой из трех ящиков - три способа,

После этого два шара можно разместить в два оставшихся ящика, два способа.

Три шара осталось положить в третий ящик

3·2·1=6 способов.

(414k баллов)
0

Спасибо!!