Нужно решить 4 и 5 БЕЗ ИСПОЛЬЗОВАНИЯ правила Лапиталя

0 голосов
31 просмотров

Нужно решить 4 и 5 БЕЗ ИСПОЛЬЗОВАНИЯ правила Лапиталя


image

Алгебра (127 баллов) | 31 просмотров
Дан 1 ответ
0 голосов

4) второй замечательный предел: {1°°}

\lim\limits_{x \to \infty} (\frac{x+3}{x-1})^{x-4} = (\frac{\infty}{\infty})^{\infty} =\{1^{\infty}\}= \lim\limits_{x \to \infty} (\frac{x-1+4}{x-1})^{x-4}=\\ \\ = \lim\limits_{x \to \infty} (1+\frac{4}{x-1} )^{\frac{x-1}{4}*\frac{4}{x-1} *( x-4)}=e^{ \lim\limits_{x \to \infty}\frac{4x-16}{x-1}}=e^4

5) 1-й замечательный предел: {0/0}

используем замену переменных и таблицу эквивалентностей:

\lim\limits_{x \to \frac{\pi }{2} } \frac{1-sinx}{\pi-2x} =\frac{1-sin \frac{\pi }{2} }{\pi-2* \frac{\pi }{2} } =\{\frac{0}{0} \}=\begin{vmatrix}x-\frac{\pi }{2}=t\\x=t+\frac{\pi }{2} \\t \to 0 \end{vmatrix}=\lim\limits_{t \to0 } \frac{1-sin(t+\frac{\pi }{2})}{\pi-2(t+\frac{\pi }{2})} = \\ \\ =\lim\limits_{t \to0 } \frac{1-cost}{\pi-2t- \pi}=\lim\limits_{t \to0 } \frac{1-cost}{-2t}=|1-cost \sim \frac{t^2}{2} |=\lim\limits_{t \to 0 } \frac{t^2}{-4t}= \\ \\ =\lim\limits_{t \to0 } \frac{t}{-4}=\frac{0}{-4}=0

(654k баллов)
0

Спасибо большое, у меня точно бы не получилось решить это, вы мне очень помогли