1. Область определения функции - ограничений нет, х ∈ Z.
2. Точки пересечения функции с осями координат.
С осью Оу при х = 0, у = -5.
С осью Ох при у = 0. Надо решить такое уравнение: -х³ + 3х - 5 = 0.
Для вычисления корней кубического уравнения используются формулы Кардано.
Для начала уравнение приводится к виду:
y³ +py +q = 0. Ответ: 1 точка х = -2,279.
4. Производная равна: y' = -3х +3
5. 6. Промежутки возрастания, убывания, экстремумы функции.
Приравниваем производную нулю: -3х² + 3 = -3(х² - 1) = 0.
Отсюда имеем 2 критические точки: х = 1 и х = -1.
Находим знаки производной на полученных промежутках:
х = -2 -1 0 1 2
y' =-9030-9.
Минимум в точке х = -1, у = -7 (переход с - на +),
максимум в точке х = 1, у = -3 (переход с + на -).
Функция возрастает при y' > 0, это промежуток (-1; 1).
Убывает (-∞; -1) ∪ (1; +∞).
7. Построение графика.
Таблица точек:
xy
-3.013
-2.53.1
-2.0-3
-1.5-6.1
-1.0-7
-0.5-6.4
0-5
0.5-3.6
1.0-3
1.5-3.9
2.0-7
2.5-13.1
3.0-23.