5\; .\end{array}\right\\\\\\1)\; \; f(x)=F'(X)=\left\{\begin{array}{l}0\; ,\; \; \; x\leq 3\; ,\\a(2x-3)\; ,\; 35\; .\end{array}\right\\\\\\2)\; \; \int a\cdot (2x-3)dx=a\cdot (2\cdot \frac{x^2}{2}-3x)+C=a\cdot (x^2-3x)+C\\\\\\3)\; \; \int \limits _{-\infty }^{+\infty }\; f(x)\, dx=1\; \; ,\; \; f(x)\geq 0\; \; \Rightarrow " alt="F(X)=\left\{\begin{array}{l}0\; ,\; \; \; x\leq 3\; ,\\a(x^2-3x)\; ,\; 35\; .\end{array}\right\\\\\\1)\; \; f(x)=F'(X)=\left\{\begin{array}{l}0\; ,\; \; \; x\leq 3\; ,\\a(2x-3)\; ,\; 35\; .\end{array}\right\\\\\\2)\; \; \int a\cdot (2x-3)dx=a\cdot (2\cdot \frac{x^2}{2}-3x)+C=a\cdot (x^2-3x)+C\\\\\\3)\; \; \int \limits _{-\infty }^{+\infty }\; f(x)\, dx=1\; \; ,\; \; f(x)\geq 0\; \; \Rightarrow " align="absmiddle" class="latex-formula">
5\; .\end{array}\right \; \; ,\; \; f(x)=\left\{\begin{array}{l}0\; ,\; \; \; x\leq 3\; ,\\0,1(2x-3)\; ,\; 35\; .\end{array}\right\\\\\\0,1(2x-3)\geq 0\; \; pri\; \; 35\; .\end{array}\right \; \; ,\; \; f(x)=\left\{\begin{array}{l}0\; ,\; \; \; x\leq 3\; ,\\0,1(2x-3)\; ,\; 35\; .\end{array}\right\\\\\\0,1(2x-3)\geq 0\; \; pri\; \; 3
![4)\; \; P(\; 3,3<X<4\; )=F(4)-F(3,3)=\\\\=0,1(16-12)-0,1(10,89-9,9)=0,1(4-0,99)=0,301 4)\; \; P(\; 3,3<X<4\; )=F(4)-F(3,3)=\\\\=0,1(16-12)-0,1(10,89-9,9)=0,1(4-0,99)=0,301](https://tex.z-dn.net/?f=4%29%5C%3B%20%5C%3B%20P%28%5C%3B%203%2C3%3CX%3C4%5C%3B%20%29%3DF%284%29-F%283%2C3%29%3D%5C%5C%5C%5C%3D0%2C1%2816-12%29-0%2C1%2810%2C89-9%2C9%29%3D0%2C1%284-0%2C99%29%3D0%2C301)