Найдите наибольшее и наименьшее значение функции ** отрезке [-1 ;1] f(x) = 0,2x^5-x^3-4x+1

0 голосов
21 просмотров

Найдите наибольшее и наименьшее значение функции на отрезке [-1 ;1] f(x) = 0,2x^5-x^3-4x+1


Геометрия (12 баллов) | 21 просмотров
Дан 1 ответ
0 голосов

1. Областью определения этой функции является любое действительное число, поскольку она задана в виде многочлена.

2. Находим производную функции. Она равна (5икс в четвертой степени ) минус (3х²) -4

3. Приравняем  к нулю производную, решив уравнение эф штрих равно нулю, т.е. найдем критические точки этой функции. Напомню. критические точки - это внутренние точки области определения, в которых производная равна нулю или не существует. Производная существует везде, остается  проверить, в каких точках она обращается  в нуль. Примем х²=у- число, большее нуля, если оно равно нулю, то получаем -4=0, а это не так. Перейдем к уравнению относительно у. получим у²-3у-4=0, по теореме Виета у₁=4, у₂= -1- сразу отбрасываем, остается у₁=4, т.е. х²=4, это уравнение дает два корня х₁=2 и х₂ =-2,  оба не попадают на отрезок [-1;1 ],  заданный по условию. Остается проверить только концы отрезка, т.е. найти значения функции в точках -1 и 1.

у(-1)= -0,2-(-1)-4*(-1)+1= 5,8,            у(1)=0,2-1-4+1=-3,8. Из этих значений и выбираем наибольшее и наименьшее значения функции  на указанном отрезке . Наибольшее значение равно 5,8; наименьшее равно -3,8.

(654k баллов)