Ответ:
Пошаговое объяснение:
1) у=(1/2)x^(2+2/3+1/2)=(1/2)x^(19/6)
y'=(1/2)(19/6)x^(19/6-1)=(19/12)x^(13/6)
2) y=(2x²+∛x)/x=(2x²/x)+∛x/x=2x+x^(1/3-1)=2x+x^(-2/3)
y'=2-(-2/3)x^(-2/3-1)=2-(-2/3)x^(-5/3)=2-(-2/3)x^(-5/3)=2+2/(3∛x⁵)
3) (uv)'=u'v+uv'
y=6x²cosx=6[(x²)'cosx+(x²)(cosx)']=6[2xcosx-x²sin]=12xcosx-6x²sinx