0}|=2\sqrt5-3\\\\\\\sqrt{(\sqrt3-2)^2}+\sqrt{(3-\sqrt3)^2}=|\underbrace {\sqrt3-2}_{<0}|+|\underbrace {3-\sqrt3}_{>0}|=-(\sqrt3-2)+(3-\sqrt3)=\\\\=2-\sqrt3+3-\sqrt3=5-2\sqrt3" alt="\sqrt{(1-\sqrt2)^2}=|\underbrace {1-\sqrt2}_{<0}|=-(1-\sqrt2)=\sqrt2-1\\\\\\\sqrt{(\sqrt6-\sqrt7)^2}=|\underbrace {\sqrt6-\sqrt7}_{<0}|=-(\sqrt6-\sqrt7)=\sqrt7-\sqrt6\\\\\\\sqrt{(2\sqrt5-3)^2}=|\underbrace {2\sqrt5-3}_{>0}|=2\sqrt5-3\\\\\\\sqrt{(\sqrt3-2)^2}+\sqrt{(3-\sqrt3)^2}=|\underbrace {\sqrt3-2}_{<0}|+|\underbrace {3-\sqrt3}_{>0}|=-(\sqrt3-2)+(3-\sqrt3)=\\\\=2-\sqrt3+3-\sqrt3=5-2\sqrt3" align="absmiddle" class="latex-formula">