Решите неравенство 10х(х-1)>(х+1)^2-5 подробно

0 голосов
22 просмотров

Решите неравенство 10х(х-1)>(х+1)^2-5 подробно


Алгебра (82 баллов) | 22 просмотров
Дан 1 ответ
0 голосов

image(x+1)^{2} - 5\\10x^{2} - 10x > x^{2} + 2x + 1 - 5\\10x^{2} - 10x > x^{2} + 2x - 4\\10x^{2} - x^{2} - 10x - 2x + 4 > 0\\9x^{2} - 12x + 4 > 0\\(3x-2)^{2} > 0\\f(x) = (3x-2)^{2}\\f(x) = 0\\(3x-2)^{2} = 0\\3x - 2 = 0\\3x = 2\\x = \frac{2}{3}\\" alt="10x(x-1)>(x+1)^{2} - 5\\10x^{2} - 10x > x^{2} + 2x + 1 - 5\\10x^{2} - 10x > x^{2} + 2x - 4\\10x^{2} - x^{2} - 10x - 2x + 4 > 0\\9x^{2} - 12x + 4 > 0\\(3x-2)^{2} > 0\\f(x) = (3x-2)^{2}\\f(x) = 0\\(3x-2)^{2} = 0\\3x - 2 = 0\\3x = 2\\x = \frac{2}{3}\\" align="absmiddle" class="latex-formula">

x∈(-∞; \frac{2}{3}) ∪ (\frac{2}{3}; +∞)

(654k баллов)
0

Рада была помочь)

0

спасибо