- наибольший член (1
---------------
---------------
---------------
1.
(1
2.
T_{k+1}" alt="T_k>T_{k+1}" align="absmiddle" class="latex-formula">
\frac{20!}{(k+1)!\cdot(19-k)!} (\sqrt5)^{k+1}\cdot(\sqrt2)^{19-k}\ /:(20! \cdot ( \sqrt{5} )^k \cdot ( \sqrt{2} )^{19-k})" alt="\frac{20!}{k!\cdot(20-k)!}(\sqrt5)^{k}\cdot(\sqrt2)^{20-k}>\frac{20!}{(k+1)!\cdot(19-k)!} (\sqrt5)^{k+1}\cdot(\sqrt2)^{19-k}\ /:(20! \cdot ( \sqrt{5} )^k \cdot ( \sqrt{2} )^{19-k})" align="absmiddle" class="latex-formula">
\frac{1}{(k+1)!\cdot(19-k)!} \sqrt5" alt="\frac{1}{k!\cdot(20-k)!}\cdot\sqrt2>\frac{1}{(k+1)!\cdot(19-k)!} \sqrt5" align="absmiddle" class="latex-formula">
\frac{\sqrt5}{k!(k+1)\cdot(19-k)!}\ /\cdot k!\cdot(19-k)!" alt="\frac{\sqrt2}{k!\cdot(19-k)!(20-k)}>\frac{\sqrt5}{k!(k+1)\cdot(19-k)!}\ /\cdot k!\cdot(19-k)!" align="absmiddle" class="latex-formula">
(1
\frac{\sqrt5}{k+1}\ /\cdot(20-k)k" alt="\frac{\sqrt2}{20-k}>\frac{\sqrt5}{k+1}\ /\cdot(20-k)k" align="absmiddle" class="latex-formula">
\sqrt5(20-k)" alt="\sqrt2(k+1)>\sqrt5(20-k)" align="absmiddle" class="latex-formula">
20\sqrt5- \sqrt{5} k" alt="\sqrt2k+ \sqrt{2}>20\sqrt5- \sqrt{5} k" align="absmiddle" class="latex-formula">
20\sqrt5-\sqrt{2}" alt="\sqrt2k+\sqrt{5} k>20\sqrt5-\sqrt{2}" align="absmiddle" class="latex-formula">
20\sqrt5-\sqrt{2" alt="(\sqrt2+\sqrt{5}) k>20\sqrt5-\sqrt{2" align="absmiddle" class="latex-formula">
\frac{20\sqrt5-\sqrt{2}}{\sqrt2+\sqrt{5}}" alt="k> \frac{20\sqrt5-\sqrt{2}}{\sqrt2+\sqrt{5}}" align="absmiddle" class="latex-formula">
1,2