Объяснение:
1.
н³/(н²-4) - н/(н-2) - 2/(н+2) = н - 1,
н³/(н-2)(н+2) - н/(н-2) - 2/(н+2) = н - 1,
н³/(н-2)(н+2) - н(н+2)/(н-2)(н+2) - 2(н-2)/(н-2)(н+2) = н - 1,
(н³-н²-2н-2н+4)/(н-2)(н+2) = н - 1,
(н³-н²-4н+4)/(н-2)(н+2) = н - 1,
(н²(н-1)-4(н-1))/(н-2)(н+2) = н - 1,
(н²-4)(н-1)/(н²-4) = н - 1,
н - 1 = н - 1,
3.
(2а+в)/(2а²-ав) - 16а/(4а²-в²) - (2а-в)/(2а²+ав) = -8/(2а + в),
(2а+в)/а(2а-в) - 16а/(2а-в)(2а+в) - (2а-в)/а(2а+в) = -8/(2а + в),
(2а+в)(2а+в)/а(2а-в)(2а+в) - а*16а/(2а-в)(2а+в) -
- (2а-в)(2а-в)/а(2а-в)(2а+в) = -8/(2а + в),
((2а+в)² - 16а² - (2а-в)²)/а(2а-в)(2а+в) = -8/(2а + в),
(4а²+4ав+в² - 16а² - 4а²+4ав-в²)/а(2а-в)(2а+в) = -8/(2а + в),
(-16а²+8ав)/а(2а-в)(2а+в) = -8/(2а + в),
-8а(2а-в)/а(2а-в)(2а+в) = -8/(2а + в),
-8/(2а +в) = -8/(2а + в),
5.
(х-2)/(х²+2х+4) - 6х/(х³-8) + 1/(х-2) = (2х - 4)/(х² + 2х + 4),
(х-2)/(х²+2х+4) - 6х/(х-2)(х²+2х+4) + 1/(х-2) = (2х - 4)/(х² + 2х + 4),
(х-2)(х-2)/(х-2)(х²+2х+4) - 6х/(х-2)(х²+2х+4) +
+ (х²+2х+4)/(х-2)(х²+2х+4) = (2х - 4)/(х² + 2х + 4),
((х-2)² - 6х + х²+2х+4)/(х-2)(х²+2х+4) = (2х - 4)/(х² + 2х + 4),
(х²-4х+4 - 6х + х²+2х+4)/(х-2)(х²+2х+4) = (2х - 4)/(х² + 2х + 4),
(2х²-8х+8)/(х-2)(х²+2х+4) = (2х - 4)/(х² + 2х + 4),
(х-2)(2х-4)/(х-2)(х²+2х+4) = (2х - 4)/(х² + 2х + 4),
(2х - 4)/(х² + 2х + 4) = (2х - 4)/(х² + 2х + 4)