![1)\; \; \left(\begin{array}{ccc}1&-2&1\; \; |\; 1\\1&3&-1\; |\; 3\\1&4&-2\; |\; 4\end{array}\right)\sim \; \; 1str\cdot (-1)+2str\; \; ;\; \; 1str\cdot (-1)+3str\\\\\\\left(\begin{array}{ccc}1&-2&1\; |\; 1\\0&5&-2\; |\; 2\\0&6&-3\; |\; 3\end{array}\right)\sim \; \; 3str:3\sim \left(\begin{array}{ccc}1&-2&1\; \; |\; 1\\0&5&-2\; |\; 2\\0&2&-1\; |\; 1\end{array}\right)\sim \\\\\\\sim 2str\cdot (-2)+3str\cdot 5\sim \left(\begin{array}{ccc}1&-2&1\; |\; 1\\0&5&-2\; |\; 2\\0&0&-1\; |\; 1\end{array}\right) 1)\; \; \left(\begin{array}{ccc}1&-2&1\; \; |\; 1\\1&3&-1\; |\; 3\\1&4&-2\; |\; 4\end{array}\right)\sim \; \; 1str\cdot (-1)+2str\; \; ;\; \; 1str\cdot (-1)+3str\\\\\\\left(\begin{array}{ccc}1&-2&1\; |\; 1\\0&5&-2\; |\; 2\\0&6&-3\; |\; 3\end{array}\right)\sim \; \; 3str:3\sim \left(\begin{array}{ccc}1&-2&1\; \; |\; 1\\0&5&-2\; |\; 2\\0&2&-1\; |\; 1\end{array}\right)\sim \\\\\\\sim 2str\cdot (-2)+3str\cdot 5\sim \left(\begin{array}{ccc}1&-2&1\; |\; 1\\0&5&-2\; |\; 2\\0&0&-1\; |\; 1\end{array}\right)](https://tex.z-dn.net/?f=1%29%5C%3B%20%5C%3B%20%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D1%26-2%261%5C%3B%20%5C%3B%20%7C%5C%3B%201%5C%5C1%263%26-1%5C%3B%20%7C%5C%3B%203%5C%5C1%264%26-2%5C%3B%20%7C%5C%3B%204%5Cend%7Barray%7D%5Cright%29%5Csim%20%5C%3B%20%5C%3B%201str%5Ccdot%20%28-1%29%2B2str%5C%3B%20%5C%3B%20%3B%5C%3B%20%5C%3B%201str%5Ccdot%20%28-1%29%2B3str%5C%5C%5C%5C%5C%5C%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D1%26-2%261%5C%3B%20%7C%5C%3B%201%5C%5C0%265%26-2%5C%3B%20%7C%5C%3B%202%5C%5C0%266%26-3%5C%3B%20%7C%5C%3B%203%5Cend%7Barray%7D%5Cright%29%5Csim%20%5C%3B%20%5C%3B%203str%3A3%5Csim%20%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D1%26-2%261%5C%3B%20%5C%3B%20%7C%5C%3B%201%5C%5C0%265%26-2%5C%3B%20%7C%5C%3B%202%5C%5C0%262%26-1%5C%3B%20%7C%5C%3B%201%5Cend%7Barray%7D%5Cright%29%5Csim%20%5C%5C%5C%5C%5C%5C%5Csim%202str%5Ccdot%20%28-2%29%2B3str%5Ccdot%205%5Csim%20%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D1%26-2%261%5C%3B%20%7C%5C%3B%201%5C%5C0%265%26-2%5C%3B%20%7C%5C%3B%202%5C%5C0%260%26-1%5C%3B%20%7C%5C%3B%201%5Cend%7Barray%7D%5Cright%29)
![\left\{\begin{array}{ccc}x_1-2x_2+x_3=1\\\quad 5x_2-2x_3=2\\\qquad \; \; -x_3=1\end{array}\right \; \; \; \; x_3=-1\; ;\\\\5x_2=2+2x_3=2-2=0\; \; \to \; \; x_2=0\; \; ;\\\\x_1=1+2x_2-x_3=1+1=2\; ;\\\\Otvet:\; \; X=\left(\begin{array}{ccc}2\\0\\-1\end{array}\right)\; . \left\{\begin{array}{ccc}x_1-2x_2+x_3=1\\\quad 5x_2-2x_3=2\\\qquad \; \; -x_3=1\end{array}\right \; \; \; \; x_3=-1\; ;\\\\5x_2=2+2x_3=2-2=0\; \; \to \; \; x_2=0\; \; ;\\\\x_1=1+2x_2-x_3=1+1=2\; ;\\\\Otvet:\; \; X=\left(\begin{array}{ccc}2\\0\\-1\end{array}\right)\; .](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Dx_1-2x_2%2Bx_3%3D1%5C%5C%5Cquad%205x_2-2x_3%3D2%5C%5C%5Cqquad%20%5C%3B%20%5C%3B%20-x_3%3D1%5Cend%7Barray%7D%5Cright%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20x_3%3D-1%5C%3B%20%3B%5C%5C%5C%5C5x_2%3D2%2B2x_3%3D2-2%3D0%5C%3B%20%5C%3B%20%5Cto%20%5C%3B%20%5C%3B%20x_2%3D0%5C%3B%20%5C%3B%20%3B%5C%5C%5C%5Cx_1%3D1%2B2x_2-x_3%3D1%2B1%3D2%5C%3B%20%3B%5C%5C%5C%5COtvet%3A%5C%3B%20%5C%3B%20X%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C-1%5Cend%7Barray%7D%5Cright%29%5C%3B%20.)
0\; \; i\; \; b>0\; ,\; to\; \; \varphi \in (0,\frac{\pi }{2})\; \; \Rightarrow \; \; \; \varphi =arctg\frac{\sqrt3}{3}=\frac{\pi}{6}\; \; ,\; \;\\\\z=r\cdot (cos\varphi +i\cdot sin\varphi )\; \; \; ,\; \; \; z=r\cdot e^{i\, \varphi }\\\\z=4\cdot (cos\frac{\pi}{6}+i\cdot sin\frac{\pi}{6})\; \; \; ,\; \; \; z=4\cdot e^{i\cdot \frac{\pi}{6}}" alt="2)\; \; z=2\sqrt3+2i\\\\z=a+bi\; \; \to \; \; r=|z|=\sqrt{a^2+b^2}\; ,\; \; a=2\sqrt3\; \; ,\; \; b=2\; ,\\\\r=\sqrt{(2\sqrt3)^2+2^2}=\sqrt{4\cdot 3+4}=\sqrt{16}=4\\\\tg\varphi =\frac{b}{a}=\frac{2}{2\sqrt3}=\frac{1}{\sqrt3}=\frac{\sqrt3}{3}\; ,\\\\Tak\; kak\; \; a>0\; \; i\; \; b>0\; ,\; to\; \; \varphi \in (0,\frac{\pi }{2})\; \; \Rightarrow \; \; \; \varphi =arctg\frac{\sqrt3}{3}=\frac{\pi}{6}\; \; ,\; \;\\\\z=r\cdot (cos\varphi +i\cdot sin\varphi )\; \; \; ,\; \; \; z=r\cdot e^{i\, \varphi }\\\\z=4\cdot (cos\frac{\pi}{6}+i\cdot sin\frac{\pi}{6})\; \; \; ,\; \; \; z=4\cdot e^{i\cdot \frac{\pi}{6}}" align="absmiddle" class="latex-formula">
![3)\; \; A(5,1)\; ,\; B(-3,7)\; ,\; C(-2,2)\\\\a)\; \overline {BC}=(-2+3;2-7)=(1;-5)\\\\|\overline {BC}|=\sqrt{1^2+(-5)^2}=\sqrt{26}\\\\b)\; \; CM\; -\; mediana\; \; ,\; \; x_{M}=\frac{x_{A}+x_{B}}{2}=\frac{5-3}{2}=1\; \; ,\\\\y_{M}=\frac{y_{A}+y_{B}}{2}=\frac{1+7}{2}=4\; \; \to \; \; \; M(1,4)\\\\CM:\; \; \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}\; \; ,\; \; \frac{x-1}{-2-1}=\frac{y-4}{2-4}\; \; ,\; \; \frac{x-1}{-3}=\frac{y-4}{-2}\; \; \to \\\\-2(x-1)=-3(y-4)\; \; ,\; \; \underline {2x-3y+10=0} 3)\; \; A(5,1)\; ,\; B(-3,7)\; ,\; C(-2,2)\\\\a)\; \overline {BC}=(-2+3;2-7)=(1;-5)\\\\|\overline {BC}|=\sqrt{1^2+(-5)^2}=\sqrt{26}\\\\b)\; \; CM\; -\; mediana\; \; ,\; \; x_{M}=\frac{x_{A}+x_{B}}{2}=\frac{5-3}{2}=1\; \; ,\\\\y_{M}=\frac{y_{A}+y_{B}}{2}=\frac{1+7}{2}=4\; \; \to \; \; \; M(1,4)\\\\CM:\; \; \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}\; \; ,\; \; \frac{x-1}{-2-1}=\frac{y-4}{2-4}\; \; ,\; \; \frac{x-1}{-3}=\frac{y-4}{-2}\; \; \to \\\\-2(x-1)=-3(y-4)\; \; ,\; \; \underline {2x-3y+10=0}](https://tex.z-dn.net/?f=3%29%5C%3B%20%5C%3B%20A%285%2C1%29%5C%3B%20%2C%5C%3B%20B%28-3%2C7%29%5C%3B%20%2C%5C%3B%20C%28-2%2C2%29%5C%5C%5C%5Ca%29%5C%3B%20%5Coverline%20%7BBC%7D%3D%28-2%2B3%3B2-7%29%3D%281%3B-5%29%5C%5C%5C%5C%7C%5Coverline%20%7BBC%7D%7C%3D%5Csqrt%7B1%5E2%2B%28-5%29%5E2%7D%3D%5Csqrt%7B26%7D%5C%5C%5C%5Cb%29%5C%3B%20%5C%3B%20CM%5C%3B%20-%5C%3B%20mediana%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20x_%7BM%7D%3D%5Cfrac%7Bx_%7BA%7D%2Bx_%7BB%7D%7D%7B2%7D%3D%5Cfrac%7B5-3%7D%7B2%7D%3D1%5C%3B%20%5C%3B%20%2C%5C%5C%5C%5Cy_%7BM%7D%3D%5Cfrac%7By_%7BA%7D%2By_%7BB%7D%7D%7B2%7D%3D%5Cfrac%7B1%2B7%7D%7B2%7D%3D4%5C%3B%20%5C%3B%20%5Cto%20%5C%3B%20%5C%3B%20%5C%3B%20M%281%2C4%29%5C%5C%5C%5CCM%3A%5C%3B%20%5C%3B%20%5Cfrac%7Bx-x_1%7D%7Bx_2-x_1%7D%3D%5Cfrac%7By-y_1%7D%7By_2-y_1%7D%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%5Cfrac%7Bx-1%7D%7B-2-1%7D%3D%5Cfrac%7By-4%7D%7B2-4%7D%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%5Cfrac%7Bx-1%7D%7B-3%7D%3D%5Cfrac%7By-4%7D%7B-2%7D%5C%3B%20%5C%3B%20%5Cto%20%5C%5C%5C%5C-2%28x-1%29%3D-3%28y-4%29%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%5Cunderline%20%7B2x-3y%2B10%3D0%7D)
![c)\; \; C\in l\; ,\; \; l\parallel AB\; \; \Rightarrow \; \; S_{l}=\overline {AB}=(-8,6)\\\\l\, :\; \; \frac{x+2}{-8}=\frac{y-2}{6}\; \; ,\; \; \frac{x+2}{4}=\frac{y-2}{-3}\; \; ,\; \; -3(x+2)=4(y-2)\; ,\\\\\underline {CM\, :\; 3x+4y-2=0}\\\\d)\; \; cos\anglt A=\frac{\overline {AB}\cdot \overline {AC}}{|\overline {AB}|\, \cdot \, |\overline {AC}|}\\\\\overline {AC}=(-2-5,2-1)=(-7,1)\; ,\; \; |\overline {AC}|=\sqrt{(-7)^2+1^2}=\sqrt{50}=5\sqrt2\\\\\overline {AB}=(-8,6)\; \; ,\; \; |\overline {AB}|=\sqrt{(-8)^2+6^2}=\sqrt{100}=10 c)\; \; C\in l\; ,\; \; l\parallel AB\; \; \Rightarrow \; \; S_{l}=\overline {AB}=(-8,6)\\\\l\, :\; \; \frac{x+2}{-8}=\frac{y-2}{6}\; \; ,\; \; \frac{x+2}{4}=\frac{y-2}{-3}\; \; ,\; \; -3(x+2)=4(y-2)\; ,\\\\\underline {CM\, :\; 3x+4y-2=0}\\\\d)\; \; cos\anglt A=\frac{\overline {AB}\cdot \overline {AC}}{|\overline {AB}|\, \cdot \, |\overline {AC}|}\\\\\overline {AC}=(-2-5,2-1)=(-7,1)\; ,\; \; |\overline {AC}|=\sqrt{(-7)^2+1^2}=\sqrt{50}=5\sqrt2\\\\\overline {AB}=(-8,6)\; \; ,\; \; |\overline {AB}|=\sqrt{(-8)^2+6^2}=\sqrt{100}=10](https://tex.z-dn.net/?f=c%29%5C%3B%20%5C%3B%20C%5Cin%20l%5C%3B%20%2C%5C%3B%20%5C%3B%20l%5Cparallel%20AB%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20S_%7Bl%7D%3D%5Coverline%20%7BAB%7D%3D%28-8%2C6%29%5C%5C%5C%5Cl%5C%2C%20%3A%5C%3B%20%5C%3B%20%5Cfrac%7Bx%2B2%7D%7B-8%7D%3D%5Cfrac%7By-2%7D%7B6%7D%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%5Cfrac%7Bx%2B2%7D%7B4%7D%3D%5Cfrac%7By-2%7D%7B-3%7D%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20-3%28x%2B2%29%3D4%28y-2%29%5C%3B%20%2C%5C%5C%5C%5C%5Cunderline%20%7BCM%5C%2C%20%3A%5C%3B%203x%2B4y-2%3D0%7D%5C%5C%5C%5Cd%29%5C%3B%20%5C%3B%20cos%5Canglt%20A%3D%5Cfrac%7B%5Coverline%20%7BAB%7D%5Ccdot%20%5Coverline%20%7BAC%7D%7D%7B%7C%5Coverline%20%7BAB%7D%7C%5C%2C%20%5Ccdot%20%5C%2C%20%7C%5Coverline%20%7BAC%7D%7C%7D%5C%5C%5C%5C%5Coverline%20%7BAC%7D%3D%28-2-5%2C2-1%29%3D%28-7%2C1%29%5C%3B%20%2C%5C%3B%20%5C%3B%20%7C%5Coverline%20%7BAC%7D%7C%3D%5Csqrt%7B%28-7%29%5E2%2B1%5E2%7D%3D%5Csqrt%7B50%7D%3D5%5Csqrt2%5C%5C%5C%5C%5Coverline%20%7BAB%7D%3D%28-8%2C6%29%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%7C%5Coverline%20%7BAB%7D%7C%3D%5Csqrt%7B%28-8%29%5E2%2B6%5E2%7D%3D%5Csqrt%7B100%7D%3D10)
0\; \; \Rightarrow \; \; \; \varphi =arccos\frac{31}{25\sqrt2}" alt="\overline {AB}\cdot \overline {AC}=-8\cdot (-7)+6\cdot 1=62\\\\coa\varphi =\frac{62}{10\cdot 5\sqrt2}=\frac{31}{25\sqrt2}>0\; \; \Rightarrow \; \; \; \varphi =arccos\frac{31}{25\sqrt2}" align="absmiddle" class="latex-formula">