Два человека одновременно отправляются из одного и того же места по одной дороге **...

0 голосов
2.7k просмотров

Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 4 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой — со скоростью 4,5 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?


Алгебра (54 баллов) | 2.7k просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Пусть х - расстояние от опушки до места встречи , тогда

первый пройдет  4 -х  ,  а второй  4 + х , так как до встречи они

пройдут за одно и то же  время , то пройденные расстояния

пропорциональны их скоростям :

\frac{4-x}{4+x} =\frac{2,7}{4,5} = \frac{3}{5} ⇒    

20 -5x = 12 +3x ⇒ x = 1 ,  4-x = 3

Ответ : 3 км

Пояснение  :   S₁ = V₁ · t  ;   S₂ = V₂· t  ⇒  S₁ /S₂ =  V₁ / V₂

(29.1k баллов)
0 голосов

Второй (который идет быстрее) дойдет до опушки за:

\displaystyle\tt \frac{4}{4,5}=4\cdot\frac{9}{2}=4\cdot\frac{2}{9}=\frac{8}{9}  (ч)

Первый за это время пройдет расстояние:

\displaystyle\tt 2,7\cdot\frac{2}{9}=\frac{27}{10}\cdot\frac{8}{9}=\frac{24}{10}=2,4  (км)

Оставшееся расстояние между ними:

4 - 2,4 = 1,6 (км)

С этого момента они движутся навстречу друг другу. Скорость сближения равна:

4,5 + 2,7 = 7,2 (км/ч)

Встреча произойдет через:

\displaystyle\tt \frac{1,6}{7,2}=\frac{16}{72}=\frac{2}{9}  (ч)

За это время первый прошел еще:

\displaystyle\tt 2,7\cdot\frac{2}{9}=\frac{27}{10}\cdot\frac{2}{9}=\frac{3}{5}=0,6  (км)

Расстояние от точки отправления в этот момент равно расстоянию, которое прошел первый человек, считая от момента отправления:

2,4 + 0,6 = 3 (км)

Ответ: 3 км

(138k баллов)