Ответ:
Пошаговое объяснение:
Пусть основание треугольной пирамиды: АВС, а вершина S
Тогда длинна стороны оснований AB=AC=BC= 4√3:√3/2 = 8,
Пусть высота, опущенная на сторону основания AB из точки S - SH, SH по теореме Пифагора = √5²-4² = 3
т.к. высота правильной пирамиды падает в точку пересечения медиан (пусть это будет О), тогда ОН = 1/3*4√3=4√3/3
тогда высота SO по теореме Пифагора равна √3²-4√3\3²=√11\3