Ответ:
Объяснение:
0=>sin(x)<0\\\sqrt{2}cos(x)-1=0<=>cos(x)=\frac{\sqrt{2} }{2}=>\\ =>x=\frac{\pi}{4}+2\pi k ;x=\frac{7\pi}{4}+2\pi k" alt="\frac{\sqrt{2}cos(x)-1 }{\sqrt{-5sin(x)} } =0\\-5sin(x)>0=>sin(x)<0\\\sqrt{2}cos(x)-1=0<=>cos(x)=\frac{\sqrt{2} }{2}=>\\ =>x=\frac{\pi}{4}+2\pi k ;x=\frac{7\pi}{4}+2\pi k" align="absmiddle" class="latex-formula">
+ОДЗ