Ответ:
Объяснение:
x=\frac{3\pi}{2}+2\pi k\\ sin(x)=\frac{1}{2}=>x=\frac{\pi}{6}+2\pi k;x=\frac{5\pi}{6}+2\pi k" alt="\sqrt{3} cos(x)+2cos(x-\frac{5\pi}{6} )=cos(2x)\\\sqrt{3} cos(x)+2*\frac{-\sqrt{3} cos(x)+sin(x)}{2} =cos(2x)\\\sqrt{3} cos(x)-\sqrt{3} cos(x)+sin(x)=cos(2x)\\sin(x)=cos(2x)\\2sin^2(x)+sin(x)-1=0\\sin(x)=-1=>x=\frac{3\pi}{2}+2\pi k\\ sin(x)=\frac{1}{2}=>x=\frac{\pi}{6}+2\pi k;x=\frac{5\pi}{6}+2\pi k" align="absmiddle" class="latex-formula">