Ответ:
2
Пошаговое объяснение:
0\\\\x-1=t^4\\\\x=t^4+1\\\\\sqrt{t^4+3} -t=1\\\\\sqrt[4]{t^4+3}=t+1\\\\ t^4+3=t^2+2t+1\\\\t^4-t^2-2t+2=0\\\\t^2(t-1)(t+1)-2(t-1)=0\\\\(t-1)(t^3+t^2-2)=0\\\\(t-1)(t^3-t^2+2t^2-2)=0\\\\(t-1)(t^2(t-1)+2(t-1)(t+1))=0\\\\(t-1)^2(t^2+2t+2)=0\\\\t_1=1\\\\D=4-8=-4<0\\\\x=t^4+1=1+1=2" alt="\sqrt{x+2}- \sqrt[4]{x-1} =1\\\\\sqrt[4]{x-1} =t>0\\\\x-1=t^4\\\\x=t^4+1\\\\\sqrt{t^4+3} -t=1\\\\\sqrt[4]{t^4+3}=t+1\\\\ t^4+3=t^2+2t+1\\\\t^4-t^2-2t+2=0\\\\t^2(t-1)(t+1)-2(t-1)=0\\\\(t-1)(t^3+t^2-2)=0\\\\(t-1)(t^3-t^2+2t^2-2)=0\\\\(t-1)(t^2(t-1)+2(t-1)(t+1))=0\\\\(t-1)^2(t^2+2t+2)=0\\\\t_1=1\\\\D=4-8=-4<0\\\\x=t^4+1=1+1=2" align="absmiddle" class="latex-formula">