В параллелограмме abcd биссектрисы углов b и c пересекаются в точке M, лежащей ** стороне...

0 голосов
76 просмотров
В параллелограмме abcd биссектрисы углов b и c пересекаются в точке M, лежащей на стороне AD. Найдите площадь параллелограмма ABCD, если известно,что BM=9, BC=15.

Геометрия (160 баллов) | 76 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Параллелограмм АВСД, ВС=АД=15, ВМ=9, ВМ и СМ -биссектрисы, уголС=2х, уголВ=180-2х, уголМВС=уголМВА=(180-2х)/2=90-х, уголМСВ=уголМСД=2х/2=х, уголАМВ=уголМВС=90-х - как внутренние разносторонние=уголМВА, треугольник АВМ равнобедренный, АВ=АМ, уголДМС=уголМСВ=х - как внутренние разносторонние=уголМСД, треугольник МСД равнобедренный, МД=ДС, но ДС=АВ, значить АВ=АМ=МД=СД, точка М -середина АД, АМ=МД=15/2=7,5, уголВМС=180-уголАМВ-уголСМД=180-(90-х)-х=90, треугольник ВМС прямоугольный, треугшольник АВМ равнобедренный, АВ=АМ=7,5, ВМ=7,5, проводим высоту АН на ВМ, ВМ=медиане=биссектрисе, ВН=НМ=9/2=4,5, треугольник АВН прямоугольный, АН=корень(АВ в квадрате-ВН в квадрате)=корень(56,25-20,25)=6, площадьАВМ=1/2ВМ*АН=1/2*9*6=27, проводим высоту ВК на АМ, ВК=2*площадьАВМ/АМ=2*27/7,5=7,2, площадь параллелограмма=АД*ВК=15*7,2=108

(133k баллов)