Ответ:
x=9
Объяснение:
\frac{4(x+5)-10(x-5)-(x-5)^2}{(x-5)^2(x+5)}=0;x\neq -5;x\neq 5\\\frac{4x+20-10x+50-x^2+10x-25}{(x-5)^2(x+5)}=0=>x^2-4x-45=0<=>(x-9)(x+5)=0=x=9" alt="3)\frac{5a^2+3a-2}{a^2-1}=\frac{(a+1)(5a-2)}{(a-1)(a+1)}=\frac{5a-2}{a-1}\\4)\frac{4}{x^2-10x+25} -\frac{10}{x^2-25} =\frac{1}{x+5}<=>\frac{4(x+5)-10(x-5)-(x-5)^2}{(x-5)^2(x+5)}=0;x\neq -5;x\neq 5\\\frac{4x+20-10x+50-x^2+10x-25}{(x-5)^2(x+5)}=0=>x^2-4x-45=0<=>(x-9)(x+5)=0=x=9" align="absmiddle" class="latex-formula">